Licentiate thesis defense: Single event upsets: measurements and modelling of proton- and neutron-induced errors in a 28 nm SRAM-based FPGA

Single event upsets are radiation-induced errors affecting electronic devices, which can cause corruption of processed data. The electromagnetic calorimeter of the PANDA experiment — a hadron-physics experiment currently under development — will employ Xilinx Kintex-7 field-programmable gate arrays (FPGAs) in its readout electronics. During operation of the experiment, the FPGAs will be exposed to a high flux of radiation. Single-event upsets caused by protons and neutrons in the configuration memory of the FPGA have been studied through experiments and theoretical modelling. The device was irradiated with protons and neutrons of energies up to 184 MeV, and the corresponding single event upset cross sections were determined. In order to describe the energy-dependence of the cross sections, and to predict the error rates during operation of PANDA, a Monte Carlo model of energy-deposition mechanisms in silicon has been developed. The model predictions agree well with the experimental data for both protons and neutrons. Using the developed model, the mean time between failures due to neutrons during initial operation of PANDA is estimated to be 180 ± 40 hours per FPGA.