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Random Walks

» Universal theoretical tool: diffusion, functional integrals, ...

» No intrinsic structure: properties come from imbedding into
an ambient space, e.g. R%

» Strong universality results - central limit theorem

» Rigorous continuum theory, Wiener integral, potential theory
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Random geometry

» Intrinsic and extrinsic degrees of freedom
> Trees

» Surfaces: Phase boundaries, membranes, string theory,
2-dimensional quantum gravity, ...

» Higher dimensional manifolds: gravity in dimensions > 3,
mainly numerical results

» General graphs, networks
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Random trees

» Physical tree-like objects: branched polymers

» Surfaces and higher dimensional manifolds can have a phase
where they degenerate into trees
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Random trees

» Secondary structure of macromolecules, e.g. RNA

1° structure 2° structure 3° structure

iz NH,
£ qﬁ« form 2° form 3°
w N structure structure
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6-C base pair A-U base pair

(borrowed from Scott K. Silverman scott@scs.uiuc.edu)
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Problem: find the secondary (and the tertiary) structure from the base
sequence

GCCUUAAUGCACAUGGGCAAGCCCACGUAGCUAGUCGCGCGACACCAGUCCCAAAUAAUGUUCACCCAACUCGCCUGACCGUCCCGCAGUA
‘GCUAUACUACCGACUCCUACGCGGUUGAAACUAGACUUUUCUAGCGAGCUGUCAUAGGUAUGGUGCACUGUCUUUAAUUUUGUAUUGGGCC
AGGCACGAAAGGCUUGGAAGUAAGGCCCCGCUUGACCCGAGAGGUGACAAUAGCGGCCAGGUGUAACGAUACGCGGGUGGCACGUACCCCA
AACAAUUAAUCACACUGCCCGGGCUCACAUUAAUCAUGCCAUUCGUUGCCGAUCCGACCCAUAUAGGAUGUGUAUGCCUCAUUCCCGGUCG
GGGCGGCGACUGUUAACGCAUGAGAACUGAUUAGAUCUCGUGGUAGUGCUUGUCAAAUAGAAUGAGGCCAUUCCACAGACAUAGCGUUUCC
CAUGAGCUAGGGGUCCCAUGUCCAGGUCCCCUAAAUAAAAGAGUC

I. “kissing hairpins” & interlaced strands are
rare (unfavored by kinematics & topology)

2. RNA can (to some extent) be considered
as a planar tree



Thermus thermophilus
large subunit ribosomal RNA
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» Family trees

» Phylogenetic trees

Immunodeficieny virus (FOL polyprotein)

1 SMman G i
- Shihoest U'Hoest monk
- ShemSLY2h Sooty Man
4 SMMM239 Simian maca
1 ShvM251 Macague

4 Hv-2UCT vovCoash
1 HI¥2-MCR13

4 HIV-2 (Senegal)

- SMAGM3 Green monkey
- SMAGMETTA Green mar
1 SWmnd5440 Mandrillus
7 SMcpzTANT Chimpanze
1 HI¥1-NDK (Zaire)

7 HI¥-1 (Zaire)

- Cl¥epzllS Chimpanzes
1 SMepz Chimpanzees Gz

» Fragmentation and coagulation models, river networks, blood
vessels, search algorithms, citation networks, random surfaces,
etc. etc.



Pygmy
Nigerian
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Random trees

v

Extensive mathematics literature: branching processes etc.

v

Theory of continuous trees (Aldous et al.)

v

Has been used to construct a theory of continuous random
surfaces (Le Gall et al.)

v

Today we will consider trees which are discrete

v

Rooted planar tree graphs
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Two main approaches

1. Equilibrium statistical mechanics

T = Set of graphs, u a probability measure on T

u(T) = 27 te PED
2. Growing trees T, — T 11, time discrete
Growth rules induce a probability measure on T, the trees

that can arise in ¢ steps

» Sometimes (1) is more natural
» Sometimes (2) is more natural

» Sometimes (1) and (2) are known to be equivalent
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Problems to study

v

What are the prinicipal characteristics of the trees under
consideration?

Universality classes

Distribution of vertex degrees

>
>
» Correlations
» Fractal dimensions: Hausdorff, spectral, ...
>

The “shape” of trees
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Galton-Watson trees

» p, = probability of having n descendents, >, pn = 1,
m = En npn

» m < 1 subcritical, m > 1 supercritical, m = 1 critical
» n generations at time £ = n — 1 if no extinction

» Well understood
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Preferential attachment trees

» In each timestep one new edge is attached to a preexisting tree

~d

» Probability of attaching to a vertex v of order &

Wi

P=—
b >k MWy

wkZO.

» Growth rule induces a probability measure on 7;.
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Local trees
» Weight factor of a tree T’
W(T) =[] wors)
1T
o(1) = order of the vertex %
» Partition functions

Zn= Y, W(T), Z=) "2y, [{|<(o
N

T:|T|=N

» Generating function g(z) = 3,, w,2" "1, radius of
convergence p

» Main equation

N NP

4 )
( ) T S/
0. FAL

16
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Local trees

\’/J\‘ Ve
™ N (

T-1r-

» Algebraically

N

W,
w3+-“

2(0) = ¢o(2(0)) = ¢ > win Z°(¢)
1=0

> Define Zy = lim¢_,¢, Z(¢)
» If Zg < p then we say that the trees are generic.

> Z(¢) — Zo ~$o— ¢
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h(Z)

Here we have defined

h(Z)

and the weights have been scaled so that p =1

h(Z)

Z():p:1 Z
©)
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» Define

_ T
WT) = Zo 6" [ wogs)
1CT

Probability measure
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» Define

_ T
WT) = Zo 6" [ wogs)
1CT

Probability measure

» This measure is the same as the one obtained from a
Galton-Watson process with

n—1
Dn = CO’wnJrl Zo
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Another equivalence

» Preferential attachment trees ~ Causal trees

» Weight proportional to the number of causal labelings

0

» More branchings, more ways to grow
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Some results about generic trees

Work with B. Durhuus and J. Wheater

» Let Vr(R)=volume of a ball of radius R centered on the root
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Some results about generic trees

Work with B. Durhuus and J. Wheater

» Let Vr(R)=volume of a ball of radius R centered on the root

(Vr(R)) ~ R% | R — oo defines dy

> Let pp(t) = probability that a random walker is back at the
root after ¢ steps on T’
(pr(t)) ~t %/ t — 0o defines d,

cf.
Ki(z,y) = (27rt)*d/23*($*y)2/2t
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> Averages taken w.r.t. a measure on infinite trees

UN = Z;,l H Wo (1)
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> Averages taken w.r.t. a measure on infinite trees

UN = Z;,l H Wo (1)
€T

VN 2 Vs a8 N — o0

» Theorem.
(i) dg =2
(i) ds = 4/3

(iii) There is a unique infinite simple path whose outgrowths are
critical GW-trees
(iv) Vertex degrees are uncorrelated



» One spine due to entropy

» The number of rooted planar trees with £ edges is
N(£) ~ £73/2¢C*

max{N({1)N(€s) : &1 + &> = £} ~ N(¢)
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» Main tool for analysing the spectral dimension is the
generating function
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Non-generic trees

» Critical exponents change

» There can arise a vertex of infinite order in the thermodynamic
limit (Bialas, Burda, Johnston) - numerical work

» Proven in a special case (S. Stefansson)
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Preferential attachment trees

Results obtained with F. David, P. di Francesco and E. Guitter

» In general many infinite simple paths
» dy = oo in many cases (all cases?)
» Broad distribution of sizes of subtrees

» Lesson: The vertex degree distribution alone does not
characterize a random tree
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The vertex splitting model

Work with F. David, M. Dukes and S. Stefansson
» A model of randomly growing rooted, planar trees
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The vertex splitting model

Work with F. David, M. Dukes and S. Stefansson
» A model of randomly growing rooted, planar trees

» Degree of vertices is bounded by an integer d
» The parameters of the model are

0 w2 w13 -+ Wid-1 Wid]
Wa,1 W22 W23 -+ Wad-1 Wad
w3 W32 Ws3 - Wz4d-1 O
Wyl Wao Wi3 0 0
(Wa,1 Wg2 0 - 0 0 |

a symmetric matrix of non—negative partitioning weights.
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The vertex splitting model

Work with F. David, M. Dukes and S. Stefansson

» A model of randomly growing rooted, planar trees
» Degree of vertices is bounded by an integer d

» The parameters of the model are

0
Wa,1
Ws,1
Wa,1

| Wd,1

a symmetric matrix of non—negative partitioning weights.

» The splitting weights w1, wa, . .

Wi,2
W2 2
W3 2
Wa,2

Wd,2

W1,3
Wa,3
Ws 3
Wa,3

0

Wid—1 Wid]
Wa,d-1 Wad

w3q-1 O
0 0
0 0

., wq are defined by

2
Wi = ) Witaj.
2 &
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Vertex splitting rules

Given a fixed initial tree

(i) Choose a vertex v of degree ¢ with relative probability w;.
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with relative probability wg ;12 k.
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Vertex splitting rules

Given a fixed initial tree
(i) Choose a vertex v of degree ¢ with relative probability w;.

(ii) Partition the edges incident with v into two disjoint sets,
V containing k — 1 adjacent edges and V' containing the rest,
with relative probability wg ;12 k.

(iii) Move all edges in V' from v to a new vertex v’ and create an
edge joining v to v'.
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A tree



Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules

w23

34 /53



Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Relation to other models

» Ergodic moves in Monte Carlo simulations of triangulations in
2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.
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Relation to other models

» Ergodic moves in Monte Carlo simulations of triangulations in
2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.

» A tree growth process which is equivalent to a simplified
model for RNA secondary structures F. David, C. Hagendorf, K.
J. Wiese

» When w; ; =0 unless j =1 or 2 = 1 it reduces to the
preferential attachment model R. Albert and A. L. Barabasi et al.

» For d = 3, in a certain limit, it reduces to Ford's alpha model
for phylogenetic trees
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Main problems

» Distribution of vertex degrees
» Correlations between vertex degrees of neighbouring vertices

» Shape of trees - Hausdorff dimension
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If we consider linear splitting weights
w; = at + b.

the analysis simplifies due to the Euler relation for trees
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> ni(T)=|T|, Zmz )=2(|T| - 1)
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Main problems

» Distribution of vertex degrees
» Correlations between vertex degrees of neighbouring vertices

» Shape of trees - Hausdorff dimension

If we consider linear splitting weights
w; = at + b.

the analysis simplifies due to the Euler relation for trees

d

> ni(T)=|T|, Zmz )=2(|T| - 1)

i=1

Results can be extended to nonlinear weights - not mathematically
rigorous (mean field approximation) - but they are in agreement
with numerical simulations

42 /53



Vertex degree distribution

For an infinite tree that has evolved in this way, let p; be the
proportion of vertices of degree 3.
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P1y-- -, Pd
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k=Pt Y i i
p w2 Ty, P

43 /53



Vertex degree distribution

For an infinite tree that has evolved in this way, let p; be the
proportion of vertices of degree 3.

For linear splitting weights and certain not so restrictive conditions,
the limiting densities
P1y-- -, Pd

exist and are the unique positive solution to the linear equations

d

W Wki12—k
k=Pt Y i i
p w2 Ty, P

These values are independent of the initial tree.

43 /53



Vertex degree distribution

For an infinite tree that has evolved in this way, let p; be the
proportion of vertices of degree 3.

For linear splitting weights and certain not so restrictive conditions,
the limiting densities
P1y-- -, Pd

exist and are the unique positive solution to the linear equations

d

W Wki12—k
k=Pt Y i i
p w2 Ty, P

These values are independent of the initial tree.
The proof uses the Perron—Frobenius theorem for " positive”
matrices.
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B = 1000

£ = 10000

o 20 40 60 80 a
FIGURE 4. The value of p3 as given in (2.45) compared to

results from simulations. Each point is calculated from 20
trees on 10000 vertices.

A comparison of the theoretical prediction with simulations in the
case d=3 and uniform partitioning weights.

Wo w3
a = -, 'B = —
w1 w1

44 /53



Unbounded vertex degrees

» Can solve the equation for p; with d = co and linear splitting
weights

» Perron Frobenius does not work here so a proof of
convergence is missing

> p; falls off factorially with 2

> pi(w; =1) = eF1)!
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Correlations
In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k 7
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Correlations

In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k 7

Let m;x = number of such edges in a finite tree of size £, where
the vertex of degree j is closer to the root

. n,
Let p;jx = lim; 0 ok Then
n

W + W . W k
. - . -1 ) g
Pk w, P (7-1) wy PR

d d
. Wi i4+2—3 We,i42—k
+(G-1) ) %Pik +(k—-1) > ;72,03'13
1=7—1 1=k—1
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Correlations
In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k 7

Let m;x = number of such edges in a finite tree of size £, where
the vertex of degree j is closer to the root

. T
Let p;jx = lim; 0 %k Then

w; + Wy . W k
Pjk = —]szjk +(J - 1)#2Pj+k—2

d d
: Wy it2—j Wk it2—k
+G-1) Y %Pik +(k—-1) > ;72,0]%
1=7—1 1=k—1

This result is obtained by assuming the existence of the limit and it
agrees with simulations.
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Correlations
In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k 7

Let m;x = number of such edges in a finite tree of size £, where
the vertex of degree j is closer to the root

. n,
Let p;jx = lim; 0 ok Then
n

W + W . W k
. - . -1 ) g
Pk w, P (7-1) wy PR

d d
. Wy it2—; Wk it2—k
+U—1)§:‘iLgimy+w—1)§:‘4&4*%#
=1 W2 i=k—1 2
This result is obtained by assuming the existence of the limit and it
agrees with simulations.
Can solve in simple cases and find nontrivial correlations

P; Pk

Wk#l_pi
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Correlations

P21
o
o
3

=100

L
0 20 40 60 80 100
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Correlations

P22

P22

07 T T T T T

B

FIGURE 17. The solution (5.5) for the density pas plotted
as a function of § for a few values of a. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.

?(284 023"y — 177 0% By + 3564 0% + 18 a® + 161a 5 — 873y + 11979 o233
—2259 0° — 39 0% — 207 0%y + 6516 a* B — 5205 a°F — 1419 o By + 996 a3°
—5994a* — 892 8%y + 1543 a23° — 180" — 668 a®B* + 324 a®y + 909 a 3%y
—2600 a”3% — 9750 3% + 222 08% — 1533 a® B2y + 10206 o* 3% — 11799 a* 3

—5300 0 3% — 1521 a® By + 1899 a® B2y + 105902 % + 1269 o 62 + 324002 B

+756 a8 + 4860 o® 5 + 6 3% — 11703 a? 5% + 172802 By — 162 o’y + 486a F2y

+18 B + 1530 a8 + 624a By — 7720333 — 900 + 24 @57)/( (Ba+28+7+6)

X (1102 + 2508 + 5y +3 0y + 120 +46%) (~a+9) (1 - 20+ ) (Ta +26+7)* )
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Hausdorff dimension

» Let T be a tree with £ edges and v a vertex of T'.

is expected to be equivalent to the one we wrote down earlier.
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Hausdorff dimension

» Let T be a tree with £ edges and v a vertex of T'.
» Denote the graph distance between v and the root by dr(v).
» We define the radius of T' as

fir = 2|T| 2, dr

veT

» The definition of the Hausdorff dimension of the tree, dg, by
the scaling law for large trees (£ = |T'|)

(Rp) ~ £ 5 0

is expected to be equivalent to the one we wrote down earlier.
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Structure functions

» Define gg;(£1,£2) = probability that a vertex of order k in a
tree of seize £ has % right subtrees of total volume £ and the
the remaining k — 7 subtrees have a total volume £;

» These functions satisfy a linear system of equations

» They can be related to the Hausdorff dimension

(41 d
<R>g = — Z (232 + 1) Z qk,k,l(e — 32,32)
2¢ £2=0 k=1

» Using scaling assumptions about the ¢ functions
Qri(€1,€ — £1) = £ Pwii(£1/8) + O(£P+1)

we reduced the problem of calculating dg to finding an

eigenvalue of a (%) x (%) matrix
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Hausdorff dimension

Linear weights and d = 3

35 T T T T T T T T

FIGURE 13. Equation (4.25) compared to simulations. The
Hausdorff dimension, dg, is plotted against y = ws/wy. The
leftmost datapoint is calculated from 50 trees on 50000 ver-
tices and the others are calculated from 50 trees on 10000
vertices.
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Hausdorff dimension
General solution ford = 3

dy =

(wa2 —2ws31) + \/(wz,z — 2w31)? + 8ws 1 (w21 + 3ws,2)

(w2 —2ws 1) + \/(’wz,z —2w31)? + 16ws 1ws3 2

ws 2 = w3/3

Ws,1 = Wa,2 = wa/3

dy

wy; =1

L L L L L
[ 20 40 60 80 100
W2
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Conclusions and problems

» Random trees are a universal mathematical tool in science
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