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Outline

I Introduction - Motivation: Physics, Mathematics, Biology, . . .

I Principal questions

I Models

I Methods

I Results
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Random Walks

I Universal theoretical tool: diffusion, functional integrals, . . .

I No intrinsic structure: properties come from imbedding into
an ambient space, e.g. Rd

I Strong universality results - central limit theorem

I Rigorous continuum theory, Wiener integral, potential theory
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Random geometry

I Intrinsic and extrinsic degrees of freedom

I Trees

I Surfaces: Phase boundaries, membranes, string theory,
2-dimensional quantum gravity, . . .

I Higher dimensional manifolds: gravity in dimensions � 3,
mainly numerical results

I General graphs, networks
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Random trees
I Physical tree-like objects: branched polymers

I Surfaces and higher dimensional manifolds can have a phase
where they degenerate into trees
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Random trees

I Secondary structure of macromolecules, e.g. RNA

First problem: RNA folding & random splitting trees

RNA primary, secondary and tertiary structure

(borrowed from Scott K. Silverman  scott@scs.uiuc.edu)
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GCCUUAAUGCACAUGGGCAAGCCCACGUAGCUAGUCGCGCGACACCAGUCCCAAAUAAUGUUCACCCAACUCGCCUGACCGUCCCGCAGUA
GCUAUACUACCGACUCCUACGCGGUUGAAACUAGACUUUUCUAGCGAGCUGUCAUAGGUAUGGUGCACUGUCUUUAAUUUUGUAUUGGGCC
AGGCACGAAAGGCUUGGAAGUAAGGCCCCGCUUGACCCGAGAGGUGACAAUAGCGGCCAGGUGUAACGAUACGCGGGUGGCACGUACCCCA
AACAAUUAAUCACACUGCCCGGGCUCACAUUAAUCAUGCCAUUCGUUGCCGAUCCGACCCAUAUAGGAUGUGUAUGCCUCAUUCCCGGUCG
GGGCGGCGACUGUUAACGCAUGAGAACUGAUUAGAUCUCGUGGUAGUGCUUGUCAAAUAGAAUGAGGCCAUUCCACAGACAUAGCGUUUCC
CAUGAGCUAGGGGUCCCAUGUCCAGGUCCCCUAAAUAAAAGAGUC

Problem: find the secondary (and the tertiary) structure from the base 
sequence

1. “kissing hairpins” & interlaced strands are
rare  (unfavored by kinematics & topology)

2. RNA can (to some extent) be considered 
as a planar tree

1.2 RNA secondary structure 1 PROPERTIES OF RNA

(i)

(ii)

(a) (b)

Figure 1.2: (a) Diagrammatics and height picture: the upper diagram shows a RNA secondary
structure, the base pairs designed as dashed rainbows over the backbone line, in the lower diagram
is drawn the corresponding height picture h(s). (b) Excluded structures: (i) kissing hairpins and
(ii) kinetically forbidden formations.

RNA folding uniquely based on its secondary structure. In fact, the separation of energy scales
considerably simplifies the RNA problem when compared to general protein folding. The total
energy of a secondary structure may be considered as a sum of its pairing energies,

E(S) =
∑

(i,j)∈S

εij (1.2)

This neglects for example loop cost energies which are specific to the indivual secondary structures
and re-organize slightly the energy landscape.

Sequence randomness vs. natural RNA. To be honest from the beginning on, we aim at a
description of random RNA sequences. The binding energies εij are supposed to be independent
quenched random variables and we intend to study RNA as a disordered system. This hypothesis
must be based on a solid ground, it certainly does not hold for the small RNA discoverd recently.
Therefore we have to specify the RNA types which this description is destinated to. In general,
it is reasonable to suppose that the RNA primary structure is not random since evolution has led
to its optimization. The quest for the relationship between the sequence heterogenity and folding
into a secondary structure constitutes a crucial unresolved problem.

For tRNA the comparision between natural and random sequences of same length has been
carried out by P. Higgs [Hig93]. By means of numerical simulations he has shown that the the
configuration of lowest energy of random tRNA is localized much above the minima for natural
sequences. This difference is attributed to enormous optimization and stabilization of the structure
of tRNA. Thus, tRNA can conceptually not be described by the above method and its length may
constitute a lower bound for the application of random sequence approaches. For the long molecule
of mRNA, the situation is completely reversed. Numerical studies have proven that natural mRNA,
which does not optimize its energetic groundstate, is well simulated by random sequences. So theyreferences
are a good candidate to be considered as ”a disordered system”.

Furthermore, the above discussion leads to the problem of choice of the distribution function
ρ(εij). From the analytical point of view we prefer a Gaussian. Other distributions are discussed
in [Bun02] and no significant effect on universal quantities has been found. The dependence of
RNA secondary structure on the energy model is discussed in [Bur05]

Sequence randomness has an interesting effect on the height picture representation: it maps
the secondary structure problem to the analysis of one-dimensional random walks in the half-space
h > 0. This problem is well-understood, in particular its return probability is caracterized by
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large subunit ribosomal RNA
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I Family trees

I Phylogenetic trees

I Fragmentation and coagulation models, river networks, blood
vessels, search algorithms, citation networks, random surfaces,
etc. etc.
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Random trees

I Extensive mathematics literature: branching processes etc.

I Theory of continuous trees (Aldous et al.)

I Has been used to construct a theory of continuous random
surfaces (Le Gall et al.)

I Today we will consider trees which are discrete

I Rooted planar tree graphs
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Two main approaches

1. Equilibrium statistical mechanics

T = Set of graphs, � a probability measure on T

�(T ) = Z�1e��E(T )

2. Growing trees Tn 7! Tn+1, time discrete

Growth rules induce a probability measure on Tt, the trees
that can arise in t steps

I Sometimes (1) is more natural

I Sometimes (2) is more natural

I Sometimes (1) and (2) are known to be equivalent

12 / 53



Problems to study

I What are the prinicipal characteristics of the trees under
consideration?

I Universality classes

I Distribution of vertex degrees

I Correlations

I Fractal dimensions: Hausdorff, spectral, . . .

I The “shape” of trees

13 / 53



Galton-Watson trees

I pn = probability of having n descendents,
P

n pn = 1,
m =

P
n npn

I m < 1 subcritical, m > 1 supercritical, m = 1 critical

I n generations at time t = n� 1 if no extinction

I Well understood
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Preferential attachment trees

I In each timestep one new edge is attached to a preexisting tree

I Probability of attaching to a vertex v of order k

Pv =
wkP

k nkww
; wk � 0:

I Growth rule induces a probability measure on Tt.
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Local trees

I Weight factor of a tree T

W (T ) =
Y
i2T

w�(i)

�(i) = order of the vertex i

I Partition functions

ZN =
X

T :jT j=N

W (T ); Z =
X
N

�NZN ; j�j < �0

I Generating function g(z) =
P

nwnz
n�1, radius of

convergence �

I Main equation

&%
'$ &%

'$

&%
'$

&%
'$

u u
u

u
u

u
u

= + � � �+ +

w2 w3
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Local trees

&%
'$ &%

'$

&%
'$

&%
'$

u u
u

u
u

u
u

= + � � �+ +

w2 w3

I Algebraically

Z(�) = �g(Z(�)) = �
1X
i=0

wi+1Z
i(�)

I Define Z0 = lim�!�0 Z(�)

I If Z0 < � then we say that the trees are generic.

I Z(�)� Z0 �
p
�0 � �
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h(Z) h(Z) h(Z)

ρ =Z
0 ZZZ

a) b) c)

Z
0

= ρ = Z
0

= ρ =1 1 1

Here we have defined

h(Z) =
g(Z)

Z

and the weights have been scaled so that � = 1
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I Define
�(T ) = Z�10 �

jT j
0

Y
i2T

w�(i)

Probability measure

I This measure is the same as the one obtained from a
Galton-Watson process with

pn = �0wn+1Z
n�1
0
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Another equivalence

I Preferential attachment trees � Causal trees

I Weight proportional to the number of causal labelings

0

1

2

9

53

4

8

10 6

7

I More branchings, more ways to grow
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Some results about generic trees

Work with B. Durhuus and J. Wheater

I Let VT (R)=volume of a ball of radius R centered on the root

hVT (R)i � RdH ; R!1 de�nes dH

I Let pT (t) = probability that a random walker is back at the
root after t steps on T

hpT (t)i � t�ds=2; t!1 de�nes ds

cf.
Kt(x; y) = (2�t)�d=2e�(x�y)

2=2t
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I Averages taken w.r.t. a measure on infinite trees

�N = Z�1N

Y
i2T

w�(i)

�N ! �1 as N !1

I Theorem.
(i) dH = 2
(ii) ds = 4=3
(iii) There is a unique infinite simple path whose outgrowths are

critical GW-trees
(iv) Vertex degrees are uncorrelated
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GW GW GW GW GW
GW

I One spine due to entropy

I The number of rooted planar trees with ` edges is

N(`) � `�3=2C`

maxfN(`1)N(`2) : `1 + `2 = `g � N(`)
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I Main tool for analysing the spectral dimension is the
generating function

QT (x) =
1X
t=0

pT (t)(1� x)t=2

and its ensemble average

Q(x) = hQT (x)i

Q(x) � x�1=3 =) ds = 4=3
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Non-generic trees

I Critical exponents change

I There can arise a vertex of infinite order in the thermodynamic
limit (Bialas, Burda, Johnston) - numerical work

I Proven in a special case (S. Stefansson)
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Preferential attachment trees

Results obtained with F. David, P. di Francesco and E. Guitter

I In general many infinite simple paths

I dH =1 in many cases (all cases?)

I Broad distribution of sizes of subtrees

I Lesson: The vertex degree distribution alone does not
characterize a random tree
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The vertex splitting model

Work with F. David, M. Dukes and S. Stefansson

I A model of randomly growing rooted, planar trees
I Degree of vertices is bounded by an integer d
I The parameters of the model are

2
666666664

0 w1;2 w1;3 � � � w1;d�1 w1;d

w2;1 w2;2 w2;3 � � � w2;d�1 w2;d

w3;1 w3;2 w3;3 � � � w3;d�1 0

w4;1 w4;2 w4;3 0 0
...

...
...

...
...

...
wd;1 wd;2 0 � � � 0 0

3
777777775

a symmetric matrix of non–negative partitioning weights.

I The splitting weights w1; w2; : : : ; wd are defined by

wi =
i

2

i+1X
j=1

wj;i+2�j :
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Vertex splitting rules

Given a fixed initial tree

(i) Choose a vertex v of degree i with relative probability wi.

(ii) Partition the edges incident with v into two disjoint sets,
V containing k� 1 adjacent edges and V 0 containing the rest,
with relative probability wk;i+2�k.

(iii) Move all edges in V 0 from v to a new vertex v0 and create an
edge joining v to v0.

v
v

V

V’
V’

V

v’
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A tree
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Vertex splitting rules

w3
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Vertex splitting rules
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Vertex splitting rules

w2;3
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Vertex splitting rules
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Vertex splitting rules

w2;3
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Vertex splitting rules

35 / 53



Vertex splitting rules

w1;4 = w4;1
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Vertex splitting rules
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Vertex splitting rules

w1;4
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Vertex splitting rules
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Vertex splitting rules

w1;4
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Relation to other models

I Ergodic moves in Monte Carlo simulations of triangulations in
2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.

vv
v’

I A tree growth process which is equivalent to a simplified
model for RNA secondary structures F. David, C. Hagendorf, K.

J. Wiese

I When wi;j = 0 unless j = 1 or i = 1 it reduces to the
preferential attachment model R. Albert and A. L. Barabasi et al.

I For d = 3, in a certain limit, it reduces to Ford’s alpha model
for phylogenetic trees
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Main problems

I Distribution of vertex degrees

I Correlations between vertex degrees of neighbouring vertices

I Shape of trees - Hausdorff dimension

If we consider linear splitting weights

wi = ai+ b:

the analysis simplifies due to the Euler relation for trees

dX
i=1

ni(T ) = jT j;
dX

i=1

ini(T ) = 2(jT j � 1)

Results can be extended to nonlinear weights - not mathematically
rigorous (mean field approximation) - but they are in agreement
with numerical simulations
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Vertex degree distribution

For an infinite tree that has evolved in this way, let �i be the
proportion of vertices of degree i.

For linear splitting weights and certain not so restrictive conditions,
the limiting densities

�1; : : : ; �d

exist and are the unique positive solution to the linear equations

�k = �wk

w2
�k +

dX
i=k�1

i
wk;i+2�k

w2
�i:

These values are independent of the initial tree.
The proof uses the Perron–Frobenius theorem for ”positive”
matrices.
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16 F. DAVID, W.M.B. DUKES, T. JONSSON, S.Ö. STEFÁNSSON.

The solution to the mean field equation for the d = 3 model and uniform
partitioning weights is

ρ3 =
7α −

√
α (α + 24β + 24)

6(2α − β − 1)
(2.45)

where α =
w2

w1
and β =

w3

w1
. Note that from the constraints we have ρ1 = ρ3

and ρ2 = 1 − 2ρ3. This solution (and solutions in general) only depends
on the ratio of the weights. In Figure 4 we compare the above solution to
simulations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  20  40  60  80

! = 10000

! = 1000 

! = 100  

! = 10   

! = 0     

"

#
3

Figure 4. The value of ρ3 as given in (2.45) compared to
results from simulations. Each point is calculated from 20
trees on 10000 vertices.

2.6. The dmax = ∞ model with linear weights. In this subsection we
drop the assumption that there is an upper bound on the vertex degrees
but we still assume that all vertex degrees are finite. If we assume that
equation (2.35) holds for d =∞, then it is possible to find an exact solution
in the case of linear splitting weights, wi = ai + b, and uniform partitioning
weights. Equation (2.35) becomes

ρk = −wk

w2
ρk +

∞∑

i=k−1

2
i + 1

wi

w2
ρi. (2.46)

Subtracting from this the same equation for ρk+1 we find

ρk

(
1 +

wk

w2

)
− ρk+1

(
1 +

wk+1

w2

)
=

2
k

wk−1

w2
ρk−1. (2.47)

A comparison of the theoretical prediction with simulations in the
case d=3 and uniform partitioning weights.

� =
w2

w1
; � =

w3

w1
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Unbounded vertex degrees

I Can solve the equation for �i with d =1 and linear splitting
weights

I Perron Frobenius does not work here so a proof of
convergence is missing

I �i falls off factorially with i

I �i(wj = 1) = 1
e(k�1)!
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Correlations
In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k ?

Let nj;k = number of such edges in a finite tree of size t, where
the vertex of degree j is closer to the root

Let �j;k = limt!1
nj;k
n

. Then

�jk = �wj + wk

w2
�jk + (j � 1)

wj;k

w2
�j+k�2

+(j � 1)
dX

i=j�1

wj;i+2�j

w2
�ik + (k � 1)

dX
i=k�1

wk;i+2�k

w2
�ji:

This result is obtained by assuming the existence of the limit and it
agrees with simulations.
Can solve in simple cases and find nontrivial correlations

�jk 6= �j�k
1� �1

:
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Correlations

36 F. DAVID, W.M.B. DUKES, T. JONSSON, S.Ö. STEFÁNSSON.
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Figure 16. The solution (5.4) for the density ρ21 plotted
as a function of β for a few values of α. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.
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Figure 17. The solution (5.5) for the density ρ22 plotted
as a function of β for a few values of α. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.

� =
w2

w1
; � =

w3

w1
; d = 3

47 / 53



Correlations

36 F. DAVID, W.M.B. DUKES, T. JONSSON, S.Ö. STEFÁNSSON.
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Figure 16. The solution (5.4) for the density ρ21 plotted
as a function of β for a few values of α. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.
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Figure 17. The solution (5.5) for the density ρ22 plotted
as a function of β for a few values of α. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.
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We can compare the above results to the case when no correlations are
present. Denote the uncorrelated densities by ρ̃ij. Then we simply have

ρ̃ij =
ρiρj

1− ρ1
.

The denominator comes from the fact that the vertex closer to the root is
of degree one with probability zero. Inserting the values from (5.3) into this
equation gives

ρ̃21 = 6/35, ρ̃31 = 4/35
ρ̃22 = 9/35, ρ̃32 = 6/35
ρ̃23 = 6/35, ρ̃33 = 4/35

showing that in general ρij "= ρ̃ij and so correlations are present between
degrees of vertices.

5.3. Results for non-linear weights. We can generalize equation (5.1)
to a mean field equation, valid for arbitrary weights, by replacing w2, where
it appears in a denominator, with w as we did with the equation for vertex
degree densities in Section 2. For d = 3 and uniform partitioning weights
the two independent densities ρ21 and ρ22 are given by

ρ21 =
1
3

(3 + β) (7α− γ)
(2α− β − 1) (3α + 2β + γ + 6)

(5.4)

ρ22 = 16

3

“
284 α2β

4
γ − 177 α5βγ + 3564 α3 + 18 α6γ + 161α β5γ − 873 γ + 11979 α2β3

−2259 α5 − 39 α6β − 207 α5γ + 6516α2β4 − 5205 α5β − 1419 α4βγ + 996 αβ5

−5994 α4 − 892 α4β2γ + 1543 α2β5 − 18 α7 − 668 α3β4 + 324 α2γ + 909 αβ3γ

−2600 α5β2 − 975 α3β3 + 222 αβ6 − 1533 α3β2γ + 10206 α2β2 − 11799 α4β

−5300 α4β3 − 1521 α3βγ + 1899 α2β2γ + 1059α2 β3γ + 1269 α3β2 + 3240α2 β

+756 αβ3 + 4860 α3β + 6 β6γ − 11703 α4β2 + 1728α2 βγ − 162 α3γ + 486α β2γ

+18 β4γ + 1530 αβ4 + 624α β4γ − 772 α3β3γ − 9 α6 + 24 β5γ
”.“

(3 α + 2 β + γ + 6)

×
`
11 α2 + 25 αβ + 5 αγ + 3 βγ + 12 α + 4 β2

´
(−α + γ) (1− 2 α + β) (7 α + 2 β + γ)2

”

(5.5)

where α =
w2

w1
, β =

w3

w1
and γ =

√
α (α + 24β + 24). These solutions

are compared to simulations in Figures 16 and 17. The other densities are
obtained by using the sum rules (5.3).
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Hausdorff dimension

I Let T be a tree with ` edges and v a vertex of T .

I Denote the graph distance between v and the root by dT (v).

I We define the radius of T as

RT =
1

2jT j
X
v2T

dT (v)�(v);

I The definition of the Hausdorff dimension of the tree, dH , by
the scaling law for large trees (` = jT j)

hRT i � `1=dH `!1

is expected to be equivalent to the one we wrote down earlier.
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Structure functions

I Define qki(`1; `2) = probability that a vertex of order k in a
tree of seize ` has i right subtrees of total volume `2 and the
the remaining k � i subtrees have a total volume `1

I These functions satisfy a linear system of equations

I They can be related to the Hausdorff dimension

hRi` = `+ 1

2`

1X
`2=0

(2`2 + 1)
dX

k=1

qk;k�1(`� `2; `2)

I Using scaling assumptions about the q functions

qki(`1; `� `1) = `��!ki(`1=`) +O(`�+1)

we reduced the problem of calculating dH to finding an
eigenvalue of a

�
d

2

�
�

�
d

2

�
matrix
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Hausdorff dimension

Linear weights and d = 3

RANDOM TREE GROWTH BY VERTEX SPLITTING 29

4.5. Explicit solutions and numerical results for dmax = 3. When the
maximal degree is d = 3, the splitting weights are taken to be linear
wi = ai+b and the partitioning weights uniform, it is easy to solve equation
(4.16) for the Hausdorff dimension . Since the solution only depends on the
ratio of the weights there is only one independent variable and we choose it
to be y := w3/w2 where 0 ≤ y ≤ 2. The solution is

dH =
3(1 +

√
1 + 16y)

8y
(4.25)

In Figure 13 we compare this equation to results from simulations. The
agreement of the simulations with the formula is good in the tested range
0.5 ≤ y ≤ 2. For smaller values of y the Hausdorff dimension increases fast
and one would have to simulate very large trees to see the scaling.
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d
H

y

Figure 13. Equation (4.25) compared to simulations. The
Hausdorff dimension, dH , is plotted against y = w3/w2. The
leftmost datapoint is calculated from 50 trees on 50000 ver-
tices and the others are calculated from 50 trees on 10000
vertices.

4.6. Hausdorff dimension for general weights.

4.6.1. General mean field argument. Our argument to compute the Haus-
dorff dimension relies on the recursion relations for the substructure proba-
bilities, studied in Section 3, which are valid only when the splitting weights
wi are linear functions of the vertex degree i (wi = ai + b). In this case the
total probability weight W(T ) for a given tree T depends only on its size !
(number of edges) and mean field arguments can be made exact.
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Hausdorff dimension
General solution for d = 3

dH =
(w2;2 � 2w3;1) +

p
(w2;2 � 2w3;1)2 + 8w3;1(w2;1 + 3w3;2)

(w2;2 � 2w3;1) +
p
(w2;2 � 2w3;1)2 + 16w3;1w3;2

:

w3;1 = w2;2 = w2=3

w3;2 = w3=3
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Conclusions and problems

I Random trees are a universal mathematical tool in science

I It remains to understand what types of behaviour can occur -
what constitutes a universality class?

I What classes of continuum trees exist?

I Explore relations to SLE and 2d conformal field theory

I Many concrete problems: nongeneric local trees, equilibrium
description of splitting vertex trees, spectral properties, etc.
etc.

I Knowing the properties of the trees which arise in a physical
system (or in some other context) may shed light on the
mechanisms that produce the trees

I Export techniques and results from trees to graphs with loops
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