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Old quantum mechanics & Niels Bohr (1910’s): 

 

– change of a quantum state by an instantaneous jump 

   (e.g. photon absorption and emission). 

 

Ensemble dynamics & Schrödinger (1920’s): 

 

– Superpositions and probability interpretation. 

 

– Deterministic evolution of probability amplitudes. 

 

 

 

– Measurable with an infinite number of identical systems  

   (ensemble). 

Quantum jumps 
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Old quantum mechanics & Niels Bohr (1910’s): 

 

– change of a quantum state by an instantaneous jump 

   (e.g. photon absorption and emission). 

 

Ensemble dynamics & Schrödinger (1920’s): 

 

Traditional example: radioactive decay 

 

 

 

 

The same applies for the decay of electronic excitations in atoms 

by spontaneous emission of a photon. 

Quantum jumps 
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Bohr vs. Schrödinger 

Schrödinger: 

 

“If all this damned quantum jumping were really to 

stay, I should be sorry I ever got involved with quantum 

theory.” 

 

Bohr: 

 

“But we others are very grateful to you that you did, 

since your work did so much to promote the theory.” 

R.J. Cook: Quantum jumps, Prog. in Optics XXVIII, Elsevier, 1990 
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Single quantum systems 

"We never experiment with just one electron
or atom or (small) molecule. In thought
experiments, we sometimes assume that we do;
this invariably entails ridiculous consequences.
In the first place it is fair to state that we are
not experimenting with single particles any
more than we can raise ichthyosauria  in the
zoo." 

Erwin Schrödinger in 1952



Department of Physics 

University of Turku 

Single quantum systems ? 

"We never experiment with just one electron
or atom or (small) molecule. In thought
experiments, we sometimes assume that we do;
this invariably entails ridiculous consequences.
In the first place it is fair to state that we are
not experimenting with single particles any
more than we can raise ichthyosauria  in the
zoo." 

Erwin Schrödinger in 1952

Superpositions and interference. 

Probability amplitudes with deterministic dynamics. 

Realised in ensembles. 

Single system dynamics is not a meaningful concept (random future). 

 
 Single systems themselves are not meaningful? 
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Trapped ions 

A photograph of a single ion in 

an electromagnetic trap 

 

(Dehmelt & Toschek, Hamburg 

1980) 

 

The ion is excited by laser light 

from the electronic ground state 

to an excited state. 

 

Excited ion returns to ground 

state by emitting a photon 

spontaneously. 

 

We ”see” the ion! 
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Single system ? 

Excitation-emission happens 

with a nanosecond time scale: 

continuous flow of light. 

 

Ion moves, broad-area picture. 

 

How do we know that it is only a 

single ion and not a small 

ensemble? 

 

By a detection scheme based 

on quantum jumps ! 
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Detection by quantum jumps 

Mercury ion Hg+ 

Metastable state 

Fluorescent state 

W.M. Itano, J.C. Bergquist, and D.J. Wineland, Science 37, 612 (1987)  



Department of Physics 

University of Turku 

One ion only or more? 

W.M. Itano, J.C. Bergquist, and D.J. Wineland, Science 37, 612 (1987)  
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Detection by quantum jumps 

W.M. Itano, J.C. Bergquist, and D.J. Wineland, Science 37, 612 (1987)  
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1st experiment in 1986 with Ba+ 
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1st experiment in 1986 with Ba+ 
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20 years later: Jumping photons 

Nature 446, 297 (2007) - March 15 
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Cavity QED & QND 

Rydberg state atoms are used to 

manipulate and detect the photon 

states in the cavity. 

 

Only one cavity mode is near-
resonant with the ”e-g” 

transition. 

 

If the cavity is initially empty, i.e., 

photon number n = 0, an atom 
comes out in state g. 

 

If there is a photon, the atom 

comes out in state e.  

 
– and the photon survives! QND 

g 

e 
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Cavity QED 

But the cavity is at a finite 

temperature T= 0.8 K. 

 

Thermal occupation of cavity 

modes. 
 

Excitation from g to e is 

possible. 

 

For resonant mode <n> << 1. 
 

Only integral photon numbers 

can be observed for single 

atoms.  
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Jumping photons 

Repeat: Only integral photon 

numbers can be observed for 

single atoms.  

 

So, to obtain <n> << 1 on 
average, we need to have 1 

photon in the cavity for a finite 

and short time. 

 

Can we see the birth and 
death of a thermal photon? 
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Jumping photons 

Repeat: Only integral photon 

numbers can be observed for 

single atoms.  

 

So, to obtain <n> << 1 on 
average, we need to have 1 

photon in the cavity for a finite 

and short time. 

 

Can we see the birth and 
death of a thermal photon? 

 

YES ! 
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Lifetime distribution 

Key point: 

 

We recover the ensemble result in the 

limit of (infinitely) many realisations 

as an average. 
 

Recent work: prepare n>1, observe 

the integer step decay into n=0, 
Guerlin et al., Nature 448, 889 (23 August 

2007). 
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Building the ensemble 

We see that  

 

a) One can observe single system dynamics 

 

b) Quantum jumps are an integral part of them 
 

c) An average of many such different and seemingly 

random ”telegraphic” signals produces the ensemble 

average 
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Unravelling the ensemble 

We can turn the idea around: 

 

a) We have a system that we want to study 

 

b) The ensemble solution is difficult to calculate 
 

c) Invent a fictitious quantum jump scheme to generate 

single system histories and build the directly 

unaccessible ensemble from them 

– and possibly obtain some insight as well 
 

Now when would I need such an approach? 
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Unravelling the ensemble 

We can turn the idea around: 

 

a) We have a system that we want to study 

 

b) The ensemble solution is difficult to calculate 
 

c) Invent a fictitious quantum jump scheme to generate 

single system histories and build the directly 

unaccessible ensemble from them 

– and possibly obtain some insight as well 
 

Now when would I need such an approach? 

 

OPEN QUANTUM SYSTEMS 
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Open systems 



i
d

dt
(t)  H (t)

The time evolution of closed quantum system: 

Schrödinger equation and the state vector. 

 

This does not in fact yield exponential decay of excitations 

such as 
 

 

 

Usually what we perceive as a quantum system is actually much 

larger than we realize. 
 

Excited states of atoms decay because they are coupled to 

surrounding electromagnetic field modes, usually nontractable. 

 

If we ignore the modes and look at the atom only, the system  
evolves into a statistical mixture i.e. a mixed state. 
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Open systems 

We can consider the system as coupled to a large reservoir. 

The time evolution of open quantum system: 

Master equation for the density matrix in the Lindblad form. 



d t 
dt


1

i
HS ,  m

m

 CmCm
†


1

2
m

m

 Cm
†

Cm  Cm
†

Cm 

State vector  

 -> density operator (matrix) 



  system  Trreservoir total 

  j

j

 total j

Gorini, Kossakowski & Sudarshan, J. Math. Phys. 17, 821 (1976); 

Lindblad, Commun. Math. Phys. 48, 119 (1976); Sudarshan PRA 46, 37 (1992) 
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Markovian open systems 

To obtain the master equation we have made a few assumptions: 

The system and the reservoir are 

weakly coupled (1st order). 

 

The reservoir is large and its spectral 

structure is structureless: 
No memory (Markovian approximation) 

Result: The        -terms are positive constants. 



d t 
dt


1

i
HS ,  m

m

 CmCm
†


1

2
m

m

 Cm
†

Cm  Cm
†

Cm 
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Open systems and quantum jumps 

A possible interpretation for the Master equation (Lindblad form) 



d t 
dt


1

i
HS ,  m

m

 CmCm
†


1

2
m

m

 Cm
†

Cm  Cm
†

Cm 

The positive constants       are related to the probabilities 

to perform a quantum jump given by the operator Cm. 

 

Note that the choice of the system basis or the set of 

operators C is not unique. It can correspond to a viable 
detection scheme but does not have to. 

 

In quantum information one can actually consider 

measurements and interaction with a reservoir as the two 

sides of the same coin. 
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Open systems and quantum jumps 

Thus we can unravel the ensemble dynamics given by 



d t 
dt


1

i
HS ,  m

m

 CmCm
†


1

2
m

m

 Cm
†

Cm  Cm
†

Cm 

into a set of single system histories i.e. deterministic time evolution 

perturbed by random quantum jumps. 

 

 

 
This leads to a very efficient simulation method. 
   

 Monte Carlo Wave Function (MCWF) method, 
 

Dalibard, Castin & Mølmer, PRL 68, 580 (1992); 

Mølmer, Castin & Dalibard, JOSA B 10, 527 (1993). 

 



(t) Pi
i

 (t)i(t) i(t)
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Simulations with quantum jumps 

Why do we need simulations?  

 

– single system histories can give more insight to system dynamics 

 

– If the Hilbert space dimension for the system is n, the density matrix  
   has n2 components (ensemble size N is often such that N<<n) 

 

Examples: laser cooling, cold collisions, molecular dynamics 

 
Holland, Suominen & Burnett, PRL 72, 2367 (1994). 

Castin & Mølmer, PRL 74, 3772 (1995). 

Garraway & Suominen, Rep. Prog. Phys. 58, 365 (1995). 

Piilo, Suominen & Berg-Sørensen, PRA 65, 033411 (2002). 

 



(t) Pi
i

 (t)i(t) i(t)
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Simulations with quantum jumps 

Example: A driven two-state atom + electromagnetic modes 

single history 

 

ensemble average 

 

Dalibard, Castin & Mølmer, PRL 68, 580 (1992). 
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To generate an ensemble member 

Solve the Schrödinger equation. 

 

Use a non-Hermitian Hamiltonian H 

which includes a decay part Hdec. 
 

Jump operators Cm can be found from 

the dissipative part of the Master 
equation. 

 

Effect of the non-Hermitian Hamiltonian: 

For each time step, the shrinking of the 

norm gives the jump probability P. 
 

For each channel m the jump probability 

is given by the time step size, decay 

rate, and decaying state occupation 

probability. 



i
d

dt
(t)  H (t)



H  Hs Hdec



Hdec  
i

2
m

m

 Cm
†

Cm



P  pm
m





pm  tm  Cm
†

Cm 
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Two-state atom: an example 

Jump operator 

 

 

 

Non-Hermitian Hamiltonian 
 

 

 

 

Jump probability (and change of norm) 

g 

e 



C   g e



Hdec  
i 

2
e e



P  p  tce
2
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The algorithm 

1. time-evolution over 



t

2. generate random number, did quantum jump occur ?

no yes

3. renormalize 



  before new time step

3. apply jump operator 



Cj  before new time step

4. At the end of time-evolution, take ensemble average



p 



p 
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The equivalence 

The state of the ensemble averaged over time step 

(for simplicity here: initial pure state and one decay channel only):  

Keeping in mind two things: 

a) the time-evolved state is                      b) the jump probability is 

Average 

”No-jump” path weight 

t-evol. and normalization 

 Jump and normalization 

 
”Jump” path weight 

This gives ”sandwich” term of the m.e. This gives comm. + anticomm. of  m.e. 



(t t) (1 P)
(t t) (t t)

1 P
P
C (t) (t)C

†

(t)C
†

C (t)



(t t)  1
iHst 

t

2
C

†

C








(t)



P  t C
†

C 
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Non-Markovian systems 

The reservoir may have a cutoff at high energies: short-time effects.  

The spectral structure may be unusual, concentration around one or 

more energies (e.g. photonic bandgap materials). 

 

We can think that there is a finite duration for any energy or information 

to spread inside the reservoir, and thus there is a possibility that some 
of it may come back to the system: memory effect . 

 

Leads to non-Markovian dynamics. For some cases it can be handled 

with the time-convolutionless method (TCL). 



d t 
dt


1

i
HS ,  m(t)

m

 CmCm
†


1

2
m

m

 (t) Cm
†

Cm Cm
†

Cm










Breuer & Petruccione, The theory of open quantum systems, Oxford 2002.  
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Non-Markovian systems 

Non-Markovian effects lead to time dependent decay rates m(t). 

 

>0:  Lindblad-type 

<0:  non-Lindblad-type 

Decay can have temporarily 

negative values but integral 

of decay over time has to be 

always positive. 

 
And quantum jumps? 

 

Markovian value 
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Non-Markovian systems 

Non-Markovian effects lead to time dependent decay rates m(t). 

 

>0:  Lindblad-type 

<0:  non-Lindblad-type 

Decay can have temporarily 

negative values but integral 

of decay over time has to be 

always positive. 

 
And quantum jumps? 

 

Problems! 

Markovian value 
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Non-Markovian systems 

What happens when the decay 

rate is temporarily (t)<0 ? 

 

The direction of information 

flow is reversed: for short 
periods of time information 

goes from the environment 

back to the system. 

 

MCWF for Markovian system: 
since the jump probability is 

directly proportional to decay 

rate, we have  

 

Negative jump probability !  

Markovian value 
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Feynman lecture on negative probabilities 

R. Feynman, ”Negative Probability” in ”Quantum implications: Essays in Honour of  

David Bohm”, eds. B. J. Hiley and F. D. Peat (Routledge, London, 1987) pp. 235-248 

”...conditional probabilities and probabilities of imagined 

intermediary states may be negative in a calculation of 
probabilities of physical events or states.” 
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Our solution for quantum jumps 

In the region of (t) < 0 the system may recover the information 

it leaked to the environment earlier. 

 

A quantum jump in the  (t) < 0 region reverses an earlier jump 

which occured in the  (t) > 0 region. 

Coherent reversal: original 

superposition is restored. 

 

But if the jump destroyed the  

original superposition, where is the 
information that we restore? 

 

And how do we calculate the 

probability for reversal? 

 
Answer: Other ensemble members 

Markovian value 
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Our solution for quantum jumps 

No jumps 2 jumps (channels i, j) 

N: ensemble size 

N0, Ni, Ni,j: numbers of ensemble members in respective states  

1 jump (channel i) 



(t)
N0(t)

N
0(t) 0(t) 

Ni(t)

N
i(t) i(t)

i

 
Ni, j (t)

N
i, j (t) i, j (t)

i, j

  ...

Here, the main quantities are 

similar as in original MCWF 

except: 

 

P’s: jump probabilities 
D’s: jump operators 

What is the physical meaning of these ? 

Pi0 
N0
Ni

t 0 C
†

C 0



Di0  0 i



Department of Physics 

University of Turku 

Our solution for quantum jumps 

MCWF NMQJ 

jump operators 

jump probability 

Lindblad operator 

from master equation 
Transfers the state from 1 jump state to 

no jump state: cancels an earlier quantum 

jump (jump - reverse jump cycle) 

Histories independent 

on each other 
Histories depend on each other via jump 

probability.  



C



Di0  0 i



P  t  C
†

C 



Pi0 
N0
Ni

t 0 D
†

D 0

Piilo, Maniscalco, Härkönen and Suominen, arXiv:0706.4438 [quant-ph] 

to appear in PRL. 
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Example: A two-state atom at zero T 



P  t 0 C
†

C 0



Pi0 
N0
Ni

t 0 C
†

C 0



i()



0()

g 

e 
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Example: A two-state atom at zero T 
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Example: Photonic bandgap material 

Piilo, Maniscalco, Härkönen and Suominen, arXiv:0706.4438 [quant-ph] 

to appear in PRL. 
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Other methods 

For many non-Markovian methods the crucial point is book-

keeping of the alternative evolutions and the possibility to 

restore coherences. 

 

For example (not an exhaustive list): 

 

– Doubled Hilbert space  

 Breuer, Kappler and Petruccione, PRA 59, 1633 (1999) 

– Pseudomodes   

 Garraway PRA 55, 2290 (1997) 

 

Measurement scheme? 

– an attempt to read the reservoir memory will alter it 

– the restoration of coherences for ∆<0 excludes the possiblity  

   to ever find a measurement scheme? 
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Other methods, part 2 

The Quantum State Diffusion/Stochastic Schrödinger Equation 

method has a non-Markovian version as well 

 Diosi, Gisin and Strunz, PRA 58, 1699 (1998) 

 Strunz, Diosi and Gisin, PRL 82, 1801 (1999) 

 Stockburger and Grabert, PRL 88, 170407 (2002) 

 

– stochastic evolution, no jumps 

 

– measurement scheme question also still unclear 

    Gambetta and Wiseman, PRA 2002, 2003 

 L. Diosi, quant-ph/0710.5489 
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Other methods vs. our method 

We use the ensemble itself for book-keeping, and thus 

we do not introduce any additional artificial elements. 

Cost: non-independent trajectories/histories 

 

“Minimalistic model” -> physical implications? Positivity. 

 

When decay rates are positive and eventually when the 

dynamics enters the Markovian region our method becomes 

equivalent with the standard MCWF method. 

 

Easy to implement, numerically efficient. 

 

Phenomenological extension to regions where one can not 

write the master equation directly? 
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Conclusions 

Single systems and evolution with quantum jumps are practical 

aspects of modern quantum mechanics. 

 

For open systems quantum jumps offer both an intuitive and 

experimentally relevant viewpoint, as well as an efficient 

simulation tool. 

 

Non-Markovian evolution is becoming increasingly important 

with reservoir engineering. 

 

The NM evolution can be used to implement Zeno and anti-

Zeno effects: 
S. Maniscalco, J. Piilo, and K.-A. Suominen, PRL 97, 130402 (2006). 

Or to protect entanglement: 
S. Maniscalco et al. PRL 100, 090503 (2008). 
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Conclusions 

Single systems and evolution with quantum jumps are practical 

aspects of modern quantum mechanics. 

 

For open systems quantum jumps offer both an intuitive and 

experimentally relevant viewpoint, as well as an efficient 

simulation tool. 

 

Non-Markovian evolution is becoming increasingly important 

with reservoir engineering. 

 

Within the jump description memory effects can lead to 

negative jump probabilities. These can be incorporated into the 

description by restoring alternative histories, and by collective 

decision-making. 
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