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Two scientific curiosities - 

  both born in the 1930’s  

• Zwicky: “The stars near the edges of galaxies are 

moving much faster than they should be! There must 

be a lot more matter than we can see.” 

 

• Goeppert-Mayer: “It is possible for some 

nuclei to decay by simultaneous emission of two 

electrons and two neutrinos, a double beta decay.” 
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History 

• Dark matter didn’t go away:  
– Only in 1970’s did this very startling observation 

begin to be studied seriously. Still unknown… 

– Simulations of the development of large scale 

structure require the presence of dark matter. 

• And, dark energy appeared, too! 

– Type IA supernovae, acting as “standard candles” 

revealed the expansion history of the universe 

• Cosmology became a quantitative science 
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Concordance  

• From WMAP (cosmic -wave) + Sn +… 
– Age of Universe: 13.73 ± 0.12 Gyr 

– Total energy density:       = 1.0052  0.0064 

– Dark energy density:        = 0.721  0.015 

– Dark matter density:       DM = 0.233  0.013 

– Baryons       b  = 0.0462  0.0015 

– Neutrinos:  ∑m < 0.61 eV (three families) 

But there are ~109 relic neutrinos for each baryon, 
so the total  mass could be  ∑all visible matter 
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What is the Dark Matter? 

• No strong or electromagnetic interactions 

– Gravity for sure, and probably weak, too. 

– Many theoretical possibilities have been advanced 

– Popular: the “Weakly Interacting Massive Particle” 

– Might be the “Neutralino” of supersymmetry (TeV) 

• Can WIMPs be detected? 

– Direct: WIMP-nuclear recoils transfer  5 - 50 keV 

– Indirect: annihilation in sun, earth, galactic center 

 multi-GeV ’s {GLAST}, or ’s {IceCube} 
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Where is the Dark Matter? 
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Huge world-wide DM effort 

• Direct, directional 

• Ionization + heat 

• Ionization + light 

• Light + heat 

• Light only 

• Heat only 

{Axions!} 

 

• low-density TPC 

• Cryogenic Ge, Si, … 

• Liquid xenon, argon 

• Cryogenic scintillator 

• LXe, NaI, … 

• Bubble Chambers! 

• -wave photons…  
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Target 

Nuclear recoils or electron recoils? 
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EDELWEISS I 
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HPGe expts 

DAMA/LIBRA 

KIMS 

Picasso, 

Simple, Coupp 

(superheated) 

ZEPLIN II/III/Max, 

XENON, LUX, 

WARP, ArDM 
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CDMS 
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Results announced at 2008 UCLA Symposium on Dark Matter, Energy 
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WIMP Quest 

• Now: limits placed at ~5 x 10-43 cm2 

– Detectors can cope with backgrounds at the level of 1 - 10 kg 

mass. Heroic efforts have been successful, so far. 

 

• Future: 100 - 1000 - 10,000 kg  - but how? 
– Backgrounds must be reduced x10, x100, x1000, …  

– Dark matter might not be WIMPs, … 

– A worthy quest, for the very brave, and the very patient. 

 

• Next, another high-risk,high value topic… 
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Two Types of Double Beta Decay  

If this process is observed: 

Neutrino mass ≠ 0 

Neutrino = Anti-neutrino! 

Lepton number is not conserved! 

Neutrinoless double 

beta decay lifetime 

Neutrino 

effective 

mass 

A known standard model process 

and an important  calibration tool 

Z 
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Neutrinos do have mass >0 

• Abundant evidence now exists supporting this 
– Neutrinos made in the sun change flavor on the way here 

• chlorine, gallium, SNO experiments 

– Neutrinos made in the atmosphere change flavor, too, 

• SuperKamioka  

– Neutrinos made in reactors change flavor too… 

• KamLAND, CHOOZ,  

 

• Flavor changes imply oscillation, require that m 
 > 0 

– Oscillation experiments measure only m2 = m1
2 - m2

2 

– Two mass differences m2
sol  & m2

atm are measured rather well 

– The mass scale, and hierarchy, remains unknown! 
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Double beta decay 

Only  

2-v decays 

Rate 

Energy  Q-value 

Only 

0-v decays 

No backgrounds 

above Q-value 

The ideal result is a spectrum of all  events, 

with negligible or very small backgrounds. 

0 
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Past Results 

Elliott & Vogel 
Annu. Rev. Part. Sci. 2002 52:115 

48Ca >1.4x1022 y <(7.2-44.7) eV 

76Ge >1.9x1025 y <0.35 eV 

76Ge >1.6x1025 y <(0.33-1.35) eV 

76Ge =1.2x1025 y =0.44 eV 

82Se >2.1x1023 y <(1.2-3.2) eV 

100Mo >5.8x1023 y <(0.6-2.7) eV 

116Cd >1.7x1023 y <1.7 eV 

128Te >7.7x1024 y <(1.1-1.5) eV 

130Te >3.0x1024 y <(0.41-0.98) eV 

136Xe >4.5x1023 y <(1.8-5.2) eV 

150Nd >1.2x1021 y <3.0 eV 



Stockholm 13 March 2008 20 

The H-M Result 

has become a litmus 

test for future efforts 

 has been a search for a 

very rare peak on a 

continuum of background.  

 

~70 kg-years of data 

13 years 

 

The “feature” at 2039 keV 

is arguably present,  

but is not the result of a 

 “blind” analysis.  

N
IM

 A
5

2
2

, 3
7

1
 (
2

0
0

4
) 



Stockholm 13 March 2008 21 

Great Number of Proposed Experiments 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
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 Current Status 
• Target (from oscillations): m ~0.050 eV = 50 meV  

• But, masses could be higher… 

 

• Goal: 100’s to 1000’s kg active mass likely to be necessary! 

• Rejection of internal/external backgrounds in ~1027 atoms!  

• Excellent energy resolution: E/E <<10 x 10-3 FWHM  

 

• Present status (partial): 
– Heidelberg-Moscow (76Ge) result: mv = 0.440 +0.014

-0.020 eV - disputed!  

– Cuoricino (130Te): cryogenic bolometers, taking data, but - background limited... 

– Cuore x20 Cuoricino, with improved radiopurity 

– GERDA (76Ge): under construction at LNGS 

– Majorana (76Ge): (proposal & R&D stage)  

– NEMO  Super-NEMO: various foils: (proposal + R&D stage) 

– NEXT 136Xe High-pressure xenon gas TPC (proposal + R&D stage) 

– EXO (136Xe)  liquid xenon TPC, now installing at WIPP 
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charge drift direction 

The EXO-200 detector: a dual TPC 

cathode 

field shaping rings 

crossed wire 

planes and avalanche 

photodiodes 
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teflon light reflectors 

flex cables on back 

of APD plane (copper 

on kapton, no glue) 

field shaping rings 

(copper) 

acrylic 

supports  
LAAPD plane (copper) and x-y 

wires (photo-etched phosphor 

bronze) 

Central HV plane 

(photo-etched 

phosphor bronze) 

x-y crossed 

wires, 60o 
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1 kV/cm 

Liquid xenon data show an “anti-correlation”  

between ionization and scintillation 

~570 keV 
Bi-207 source 

 Energy resolution (predicted): 3.3 %FWHM @ Q()
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Xenon: Strong dependence of  

energy partitioning on density!  

For  >0.55 g/cm3, energy resolution deteriorates rapidly 

Ionization 

signal only 
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What’s happening at  

densities  > 0.55 g/cm3 ? 

Two phases of xenon can co-exist (fog,...)  

• High atomic density + ionization density 

  sites of complete recombination 

Energy is returned as scintillation & heat 

• Landau:  large dE/dx fluctuations + -rays 

    non-Gaussian partition of energy 

• Anomalously large partition fluctuations 

{Scintillation  Ionization}  (+ HEAT...) 
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Big Impact for WIMP Search in LXe 

Scintillation (S1) & Ionization (S2) are signals 

that are used to reject electron recoils 

But, in LXe: 

S2/S1 fluctuations are anomalously large  

 Bad news for discrimination power in LXe! 

 What do events in LXe look like? 
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Gamma events (e-R) 

Neutron events (N-R) 

Latest Xenon-10 

results look better, 

but nuclear recoil 

acceptance still 

needs restriction 
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Impact for WIMP Search 

Scintillation (S1) & Ionization (S2) are signals 

that can be used to reject electron recoils 

But, in LXe:  

S2/S1 fluctuations are anomalously large  

 Bad news for discrimination power in LXe! 

 < 0.55 g/cm3: normal S2/S1 fluctuations 

 Maybe,... Xenon gas is better (...much better) ?? 
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High-pressure xenon gas TPC 

• Fiducial volume surface: 

– Single, continuous, fully active, variable,... 

– 100.0% rejection of charged particles (surfaces)  

– but: TPC needs a t0 to place event in z 

 

• Tracking: 

– Available in gas phase only 

– Topological rejection of single electron events 

– TPC proven to handle complex events… 
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From <10 to >10,000 particles 
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 TPC:  Signal & Backgrounds 

-HV plane 
Readout plane B Readout plane A 

. 

ions electrons 

Fiducial 

volume 

surface 

Signal:  event or WIMP Backgrounds 

* 

* 
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TPC: Basic Advantages... 

• Fiducial volume surface: excellent 

• Tracking in gas: excellent 

But, a TPC is not known for: 

Excellent energy resolution 
So,  

What is possible??  
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Two questions  

What is the best energy resolution that 

can be obtained with a  

high-pressure xenon gas TPC 

  

• in principle? 

• in practice? 
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“Intrinsic” Energy Resolution for 

Ionization at 136Xe Q-value 

Q-value (136Xe  136Ba) = 2480 KeV 

W = E per ion/electron pair in xenon gas = 21.9 eV, but  

W depends on Electric field strength, might be ~24.8 eV 

N = number of ion pairs = Q/W  

N = 2480 x 103 eV/24.8 eV = ~100,000 electron/ion pairs 

N = (FN)1/2  F is the Fano factor - constraint on 

fluctuations 

F = 0.13 - 0.17 measured for xenon gas; take F = 0.15 

N = (FN)1/2  ~123 electrons rms @ 2480 keV    

 This is a rather small number! 
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“Intrinsic” Energy Resolution for 

Ionization at 136Xe Q-value 

   

  E/E  = 2.35 x (FN)1/2 = 2.35 x (FW/Q)1/2 

Answer to question #1: 

 

E/E   ~2.8 x 10-3   FWHM @ 2480 keV*  

(xenon gas  - ionization intrinsic fluctuations only) 

 

 
*This ideal result is ~ same as that achieved with germanium diodes, in practice. 
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Energy Resolution Factors 

 in Xenon Gas Detectors 
– Intrinsic fluctuations 

• Fano factor (partition of energy): small for  < 0.55 g/cm3 

– Loss of signal (primary): 

• Recombination, quenching by molecular additives (heat) 

– Loss of signal (secondary): 

• Capture by grids or electronegative impurities 

– Gain process fluctuations: 

• Avalanche charge gain fluctuations are large 

– Gain process stability: 

• Positive ion effects, density and mix sensitivity,... 

– Long tracks  extended signals  

• Baseline shifts, electronic non-linearities, wall effect,... 
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Generalization 

• If fluctuations are uncorrelated, then* 

N = ((F + L + G)N)1/2 

F = Fano factor = 0.15 

L = loss of primary ionization (set to 0) 

G = fluctuations & noise in gain process 
 

Goal: Keep G no larger than F = 0.15 

Is this possible ?? 
*D. Nygren, Nucl. Inst. & Meth. A 581 (2007) 632  



Stockholm 13 March 2008 40 

Avalanche Charge Gain 

• One electron liberates others, which liberate… 

Early ionization history determines gain    

• for wire (E ~1/r)  0.6 < G < 0.9 * 
• N = ((0.15 + 0.8)N) 1/2  = 328 

• E/E  = ~7.0 x 10-3 FWHM  

 Lost the benefit from a small Fano factor 

 

 
*Alkhazov G D Nucl. Inst. & Meth. 89 (1970) 155 (for cylindrical proportional counters)  
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What is this factor “G”? 

• In a very real sense:  

 G is a measure of the precision with 
which a single electron can be counted. 

 

• Consider next: 

– Ionization Imaging TPC - no gas gain! 

– Negative Ion TPC - count each electron! 

– Electro-Luminescent TPC  ? 
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“Ionization Imaging” TPC 

  No avalanche gain  
• dn/dx ~ 1 fC/cm:  ~6,000 (electron/ion pairs)/cm 

• gridless “naked” pixel plane (~5 mm pads) 

• very high operational stability 

But, electronic noise must be added!  
•  = 50 e– rms/pixel 

• G = 2/ne =  502/3000 = ~0.8 

• E/E  ~  7 x 10-3 FWHM  

• But: complex signals, many channels, ultra-low 

noise, waveform capture  much R&D  needed 
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“Negative Ion” TPC 

 “Counting mode” = digital readout, (F + L)  

– Electron capture on electronegative molecule 

– Very slow drift to readout plane; 

– Strip electron in high field (?), generate avalanche  

– Count each “ion” as a separate pulse… 

 

Maybe,… E/E  = ~3 x 10-3 FWHM   

 Appealing, but will it work in HPXe?... 

   Much R&D needed 
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Electro-Luminescence (EL)  

(Gas Proportional Scintillation)  

– Electrons drift from low to high electric field region 

– Electrons gain energy, excite xenon, lose energy 

– Xenon generates UV 

– Electron starts over, gaining energy again 

– Linear growth of signal with voltage 

– Photon generation up to ~1000/e, but no ionization 

– Early history irrelevant, so  fluctuations small 

– Maybe… G ~ F?  
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H. E. Palmer & L. A. Braby 

Nucl. Inst. & Meth. 116 (1974) 587-589 

 
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55Fe Resolution:  8.4% FWHM 

From this spectrum:  G ~0.19 
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Fluctuations in EL  

G for EL contains three terms: 

1. Fluctuations in nuv (UV photons per e):      uv = K/√nuv  

– nuv ~ HV/E = 6600/10 eV ~ 660 K < 1 

2. Fluctuations in npe (detected photons/e):   pe = 1/√npe 

– npe ~ solid angle x QE x WLS x nuv = 0.1 x 0.25 x 0.5 x 660 ~ 8  

3. Fluctuations in PMT single PE response:   pmt ~ 0.6 

 

  G = 2 = 1/(660) + (1 + 2
pmt)/8) ~ 0.17  

 

The more photo-electrons, the better! 
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 EL provides precision 

electron counting  
 

   

 Assume F = G  = 0.15 

Ideal energy resolution (2 = 0.3 x E/W): 

  

E/E  ~4 x 10-3 FWHM @ 2480keV 

This is promising!  
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Electro-Luminescent Readout 

• To keep G < F = 0.15, then: 

npe  > 10/electron 

 

 npe > 1,000,000 @ 2480 keV ! 
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Electro-Luminescent Readout 

How to detect this much signal? 

 

Answer: Use both TPC readout planes 

– If EL signal is generated in plane “A” 

– do “tracking” in Plane “A” 

– but: record “energy” in plane “B” 



Stockholm 13 March 2008 51 

 TPC Signal  

Transparent HV plane 

Readout plane B Readout plane A 

. 

ions 

record 

energy 

signal 

here… 

Signal:  event or WIMP 

EL signal 

created here 

* 
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Electron drift in xenon gas 

• It is very slow: ~1 mm/s 

• This spreads out the arriving signal in time - 

up to 100 s for many  events 

• The signal is spread out over the entire 

readout plane “B”, many 100’s of PMTs 

• These two factors greatly reduce the dynamic 

range needed for readout of the signals 

 No problem to read out 5 kev to 5000 keV 
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EL: How much light? 

• Boundary condition: npe/electron 10 

• Let photon detection efficiency =  
 = solid angle x transparency x QEPMT 

Assume reflective TPC field cages 

 = /(4 x 4) x 2 x 0.9 x 0.3 = 0.03 

• npe/electron = 10 ~ Nphotons x  

 Nphotons ≥ 300/electron   

Can this be done? 
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Generation of EL in xenon 

dN/dx = 140(E/p - 0.83)p UV photons/cm 
• E/p = 8 kV/cm-bar is maximum for EL only  

• E/p = 0.83 kV/cm-bar is minimum for EL 

Wire plane is ideal, and no charge gain! 
– Nphotons = 1540 p r0   300 

–  p r0 ≥ 0.2 (bar-cm) set p = 20 bars, r0 = 0.15 mm,  

then: npe = 15, G = 0.08 

 

E/E  = 3.4 x 10-3 FWHM @ 2480keV 
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Answer to Question #2 

• Best practical energy resolution: 

TPC with EL MWPC readout planes 

• separated function: tracking (A)  energy (B) 

• planes A & B symmetric and equivalent 

 

E/E  = 3.4 x 10-3 FWHM @ 2480keV 

Maybe a HPXe TPC can offer both excellent 

particle tracking and energy resolution! 
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1000 kg Xe:  = 225 cm, 2 x L =225 cm  

 ~ 0.1 g/cm3 (~20 bars) 

A. Sensitive volume 

B.  HV cathode plane 

C. EL MWPC readout planes, 

with photomultiplier arrays 

D. Flange for services  

E. Filler and neutron absorber, 

polyethylene, or liquid 

scintillator, or … 

F. Field cages and HV insulator, 

(rings are exaggerated here)  

L 
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Perspective 

By realizing that the key idea is counting electrons, 

we arrive at a new, attractive detector concept: 

 

Near-intrinsic energy resolution in HP-Xe EL TPC 

 Ionization signal alone is sufficient to achieve this 

WIMP +  search:  no compromises! 

Dynamic range OK: keV - MeV energy range 

 Ionization & scintillation both recorded by PMTs 

Scintillation UV for S1 & t0 automatically available 
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Outlook 

• It may be possible to do two sensitive, (costly 

& high risk) experiments simultaneously 

 

• It remains to be determined whether this 

notion will provide all needed performance 

 

• It remains also to be seen if this concept will 

be built, but for success, a good acronym… 
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Electro-Luminescence:  
Great Rewards Await NEXT Double- Experiment 
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Electro-Luminescence:  
Great Rewards Await NEXT Double- Experiment 

Thank you for your 

bravery and patience 
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Germanium Diodes 

Fano factor: similar to xenon gas: ~0.13  0.02 

Energy per electron-ion pair:   2.96 eV 

 More carriers  Ge diodes better by (22/3)1/2 = 2.7? 

E/E  ~1 x 10-3   FWHM @ 2480 keV, germanium, ideal 

E/E  ~2.4 x 10-3   FWHM @ 2480 keV  germanium, real 

 

Why aren’t Ge diodes as good as Ge (ideal)? 

 Factors: electronic noise, edge effects, trapping, 
complex interactions: Compton, photo-conversion… 
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E: Three Pathways 

• When a particle loses energy in xenon, where 

does the energy go? 

– Ionization 

– Scintillation:  VUV ~170 nm (1, 2 …) 

– Heat! 

• How is the energy partitioned? 

– Responses differ for , , nuclei 

– Dependence on xenon density , E-field 

– Processes still not completely understood  



Stockholm 13 March 2008 65 

“Effective Fano Factor” for LXe 

Conti et al: “F” ~ 20 to match their LXe data 

Compare: LXe/HPXe Fano factors: (“20”/0.15)1/2 = 11.5  

 

E/E  = 2.35 x (FW/Q)1/2  31 x 10-3 FWHM 

 

Anti-correlation (use it!): 

Using  both the scintillation and ionization signals together allows 

recovery of the total signal (except for heat).  

But: in practice, only a fraction of the light can be detected; the 

energy resolution in LXe cannot be as good as intrinsic. 

The impact of energy lost to heat on resolution is unknown.  
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Molecular physics of xenon 

• Macroscopic: 
– Critical temperature of xenon: room temperature 

– Gas & liquid phases can coexist together at normal temp 

– Strong departures from ideal gas law: high compressibility 

• Microscopic: 
– For densities above ~0.5 g/cm3, fog or lacework forms 

– Aggregates form a localized quasi-conduction band 

– Ionization process  very non-uniform dE/dx 

– Recombination is ~ complete in the regions of high q/v 

– Recombination increases scintillation, reduces ionization  

 A non-gaussian partition of energy between 
ionization & scintillation occurs for  >0.5 g/cm3 
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“Gotthard TPC”  
Pioneer TPC detector for 0-  decay search 

– 5 bars, enriched 136Xe (3.3 kg) + 4% CH4 

– MWPC readout plane, wires ganged for energy 

– No scintillation detection  

•  no TPC start signal! 

• No measurement of drift distance! 

– E/E ~ 80 x 10-3 FWHM (1592 keV) 

 66 x 10-3 FWHM (2480 keV) 

Reasons for this less-than-optimum resolution are not clear… 

Likely: uncorrectable losses to electronegative impurities  

Possible: Undetectable losses to quenching (4% CH4) 
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A scary result: adding a tiny 

amount of simple molecules  

(CH4, N2, H2 ) to HPXe 

quenches both ionization 

and scintillation for ’s 

 particle: dE/dx is very high 

Gotthard TPC: 4% CH4 

Loss(): factor of 6 

For  particles, what was 
effect on energy resolution?  

Surely small but not known, 
and needs investigation 

(~25 bars) 

 particles 
K. N. Pushkin et al, 2004 

IEEE Nuclear Science 

Symposium  proceedings 
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Molecular Chemistry of Xenon  

• Scintillation: 

• Excimer formation:       Xe*+ Xe  Xe2*  h + Xe 

• Recombination: Xe+ + e–  Xe*   

• Density-dependent processes also exist: 

 Xe*+ Xe*  Xe**  Xe++ e
-
 + heat 

• Two excimers are consumed to make one photon! 

• More likely for both high  + high ionization density 

– Quenching of both ionization and scintillation can occur! 
Xe* + M  Xe + M*  Xe + M + heat (similarly for Xe2*, Xe**, Xe2*

+… )  

Xe+ + e–(hot) + M  Xe+ + e–(cold) + M*   

Xe+ + e–(cold) + M + heat  e–(cold) + Xe+  Xe*   
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Barium daughter tagging  

and ion mobilities… 
• Ba+ and Xe+ mobilities are quite different! 

– The cause is resonant charge exchange 

– RCE is macroscopic quantum mechanics 

• occurs only for ions in their parent gases  

• no energy barrier exists for Xe+ in xenon  

• energy barrier exists for Ba ions in xenon 

• RCE is a long-range process: R >> ratom 

• glancing collisions = back-scatter 

RCE increases viscosity of majority ions 
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Barium daughter tagging  

and ion mobilities… 
– Ba++ ion survives drift: IP = 10.05 eV 

• IP of xenon is 12.14 eV 

– Ba++ ion arrives at HV plane, well ahead of all other Xe+ ions  

• Mobility difference, ~50%, is known to be true at low density 

– Ba++ ion liberates at least one electron at cathode surface 

• May be an unrealistic fantasy 

–  Electrons drift back to anode plane, make detectable signal 

• Arriving electron signal serves as “echo” of the Ba++ ion, 

–  A very strong constraint on event validity is obtained: 

• Process is automatic! 

 

– Clustering effects are likely to alter this picture! 
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A small test chamber 

can show whether ion 

mobility differences 

persist at higher gas  

density (no data now). 

 

 
This could offer an auto-

matic method to tag the 

“birth” of barium in the 

decay, by sensing an echo 

pulse if the barium ion 

causes a secondary 

emission of one or more 

electrons at the cathode. 

 


