Topological transitions and singularities in fluids: Life of a Drop

Manne Siegbahn Memorial Lecture, Oct. 18, 2007

During its brief existence, drop goes through many stages. Shape changes often accompanied by dynamic singularities*. *Dynamic singularities: infinitesimally small, very short time

Test-bed for understanding broad class of phenomena.

How do drops fall, break apart?

Topology changes - real transition

Neck radius $\rightarrow 0$ (curvature $\rightarrow \infty$)

Pressure $\rightarrow \infty$

Cannot do simulation to get to other side of snapoff

Is there understanding for these transitions like that for thermodynamic phase transitions?

Similar behavior: Star formation

Similar behavior: Breakup of bacteria colonies

Elena Budrene -Harvard

Dynamic singularities appear everywhere in physics - celestial \rightarrow microscopic \rightarrow nuclear fission...

Who Did It

Experiment

Itai Cohen Nathan Keim Xiangdong Shi Lei Xu

Theory/Simulation Osman Basaran Michael Brenner Pankaj Doshi Jens Eggers Laura Schmidt Wendy Zhang

Birth and Childhood

A happy childhood!

Surface tension + gravity

Rayleigh-Plateau Instability

Surface area <u>decreases</u> if $L > 2\pi R$. Unstable to perturbations.

Pressure greatest at minimum thickness \Rightarrow liquid squeezed out.

Bolas Spider

Midlife Crisis

Midlife Crisis

QuickTimeTM and a Photo - JPEG decompressor are needed to see this picture.

QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

Water into Air

QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

Singularity is same even though gravity points in opposite direction

Xiangdong Shi and Michael Brenner

Water Drops

QuickTime[™] and a 3ivx D4 4.5.1 decompressor are needed to see this picture. How to Think About Shapes: Scale invariance (borrowed from statistical mechanics)

Breakup \Rightarrow radius smaller than any other length. Dynamics insensitive to *all* other lengths. Flow depends <u>only</u> on shrinking radius. How to Think About Shapes: Scale invariance (borrowed from statistical mechanics)

Breakup \Rightarrow radius smaller than any other length. Dynamics insensitive to *all* other lengths. Flow depends <u>only</u> on shrinking radius.

But: Radius depends on flow (which depends on radius (which depends on flow (which depends on radius (which depends on flow

(which depends on radius

(which depends on flow

(which depends on radius (w hich depends on flow (which depends on radius (which depends on flow

> Self-similar structure: Blow up any part \Rightarrow regain original. Universal shapes

Similarity Solution

$$h(z,t) = f(t) H[(z-z_o)/f(t)^{\beta}]$$

Similarity solutions same AT DIFFERENT TIMES with different magnifications along h and z.

Scaling determined by force balance at singularity. $PDE \Rightarrow ODE$

Keller and Miksis (83); Eggers, RMP (97)

Unhappy drops are all unhappy in their own way

Explore different asymptotic regimes by tuning parameters.

Depends on:

viscosity of inner fluid, μ viscosity ratio of fluids, λ (air is a fluid) density of inner fluid, ρ density difference, $\Delta \rho$ surface tension, γ nozzle diameter, D

Scaling Profiles - Glycerol into Oil

Stretching axes by different amounts at different times produces master curve

Itai Cohen, Michael Brenner Jens Eggers, Wendy Zhang Singularities tame non-linearity of Navier-Stokes Eqs.

Role of scale invariance -

borrowed from critical phenomena

Near singularity, dynamics insensitive to all other lengths

Emphasize what is Universal

But . . .

Water into Oil Not so simple

Persistence of memory. No similarity solution. No universality!

Separation of scales but also of axial and radial

longth scales

I. Cohen, W. Zhang P. Doshi, O. Basaran P. Howell, M. Siegel

Water into Oil Continued...

Viscosity of water begins to matter \Rightarrow creates very fine thread.

Remember water drop in air?

QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

Remember water drop in air?

What about air drop in water (*i.e.*, *a* bubble)?

QuickTime[™] and a Photo - JPEG decompressor are needed to see this picture.

QuickTime™ and a Cinepak decompressor are needed to see this picture.

N. Keim, W. Zhang

Perturbations

slight nozzle tilt

oblong nozzle

QuickTime™ and a Cinepak decompressor are needed to see this picture.

N. Keim, W. Zhang

The drop falls \Rightarrow splashes

Is splash interesting? Break-up localizes energy from the kinetic energy into singular points as surface ruptures. How?

Coronal splash

Drop splashes

QuickTime[™] and a decompressor are needed to see this picture. Drop of alcohol hitting smooth, dry slide

Lei Xu, Wendy Zhang

Drop splashes

QuickTime[™] and a decompressor are needed to see this picture. QuickTime™ and a decompressor are needed to see this picture.

atmospheric pressure

1/3 atmospheric pressure

(Mt. Everest)

Lei Xu, Wendy Zhang

Impact Velocity vs. Threshold Pressure

Lei Xu, Wendy Zhang

Singularity during splash

Drop rim expands infinitely rapidly at moment of impact.

At high viscosity, does air matter?

5 cSt

QuickTime[™] and a decompressor are needed to see this picture.

High pressure

Low pressure

QuickTime[™] and a decompressor are needed to see this picture.

> Lei Xu, Casey Stevens, Nathan Keim

At high viscosity, does air matter?

10 cSt

QuickTime™ and a Cinepak decompressor are needed to see this picture.

100 kPa

43 kPa

QuickTime[™] and a Cinepak decompressor are needed to see this picture.

Air still matters.

Does compressibility?

1000 cSt

QuickTime™ and a Cinepak decompressor are needed to see this picture. Last stage of the drop: What remains?

Why are drops always ring-shaped?

How does evaporation bring everything to edge?

Equations for potential of a charged conductor: at points, electric field (evaporation rate) diverges. Every stage of drop's life arouses astonishment. Ideas used to treat singularities appear in different variations - from thermodynamic to topological transitions

> A great idea "is like a phantom ocean beating upon the shores of human life in successive waves of specialization." A. N. Whitehead

Surprises and beauty await us... even in the most familiar phenomena!

Navier-Stokes Equation

$$\rho[\partial \mathbf{v}/\partial \mathbf{t} + (\mathbf{v} \cdot \nabla)]\mathbf{v} = -\nabla P + \eta \nabla^2 \mathbf{v} + \mathbf{F}$$

inertial terms = internal pressure + viscous force + body force

- + Incompressibility Equation
- + Laplace pressure equation for surface

Remember water drop in air?

What about air drop in water (*i.e.*, a bubble)?

slight nozzle tilt

Singularity sensitive to small perturbations remembers axial asymmetry

QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

N. Keim, W. Zhang

Memory of all initial amplitudes

Modes oscillate: $a_n(\tau) \propto e^{\pm i c_n \ln \tau}$

Laura Schmidt & Wendy Zhang

Nathan Keim

 V_0 vs. P_T for different gases

Data Collapse for Different Gases

Model

Destabilizing stress: $\Sigma_{\rm G} \sim \rho_{\rm G} \, {\rm C}_{\rm G} \, {\rm V}_{\rm e}$ ~ P M/kT $\sqrt{\gamma}$ kT/M $\sqrt{{\rm RV}_{\rm 0}}/{\rm 2t}$

Stabilizing stress: $\Sigma_{L} = \sigma/d = \sigma/\sqrt{\nu_{L}t}$

The ratio of $\Sigma_{\rm G}$ and $\Sigma_{\rm L}$ determines splashing:

 $\Sigma_{\rm G}/\Sigma_{\rm L}$ ~ 1 at threshold

Different liquid viscosities

Glycerol/water

100 x viscosity of water

Glycerol/water

Glycerol/water

Xiangdong Shi, Michael Brenner

Scaling for different λ

Atmospheric pressure (100kPa)

Reduced pressure (17kPa)

Dynamic singularities appear everywhere in physics from celestial to microscopic to nuclear fission...

"I am an old man now and when I die and go to Heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is turbulent motion of fluids. And about the former I am really rather optimistic." Sir Horace Lamb (1932)

Water falling in air

Xiangdong Shi Michael Brenner

NOT like cartoon!

2 snapoffs:

Top Bottom

As it evaporates, what remains?

Data collapse of different liquids in high-velocity regime in air

Physical constants of gases

gas	He	Air	Kr	SF_6
Molecular				
Weight	4	29	83.8	146
(Dalton)				
Dynamic				
viscosity	20	18.6	25.6	15.3
(µPa s)				