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physics …

I'm astounded by people who want to 
’know' the universe when it's hard enough 
to find your way around Chinatown.

Woody Allen 



physics …

I am at two with Nature

Woody Allen 
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low-temperature quantum matter

• superconductor
 (condensate of paired electrons)

• BEC of cold atoms

• fractional quantum Hall state
  (liquid of correlated electrons)



low-temperature quantum matter

Today:

• quantum matter (electrons or cold atoms)
in the lowest Landau level (LLL)

• elementary excitations

• non-Abelian quantum Hall states

`low-energy particle physics in the LLL’



non-Abelian quantum Hall states

Why the name?

How can we 
detect them?

What is so special 
about them? 

What are nAqH states?

Can they be 
useful?

When will we know 
if they are for real?
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life in the Lowest Landau Level

(1) charged particles in 2D with strong perpendicular magnetic field

(2) rotating bosons in the limit where rotation frequency Ω
approaches the trap frequency ω⊥
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life in the Lowest Landau Level

electrons under quantum Hall effect conditions

Correlated electrons
• in two dimensions
• at low temperatures
• in strong magnetic field



life in the Lowest Landau Level
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In quantum mechanics, 2D
electrons in a magnetic field B
have LL energies
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Lowest Landau Level (LLL): analytic functions, m≥0,

           localized near radius rm= 2l √m
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life in the Lowest Landau Level

rapidly rotating bosons
Ω

ω⊥

LLL approached in the
limit where the rotation
frequency Ω approaches
the trap frequency ω⊥



life in the Lowest Landau Level

n=1

                    2 ω⊥

                                          ω⊥ - Ω
n=0
              m=-1      m=0      m=1      m=2       m=3

single particle states for free particles in 2D harmonic trap
(frequency ω⊥) rotating at frequency Ω (n≥0, m≥-n)

Lowest Landau Level (LLL): n=0, m≥0 :

of energy E=m(ω⊥ - Ω)
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rotating bosons in the LLL

LLL model for rotating bosons

   N bosons occupying LLL orbitals

           Ψm ,    m=0,1,2,…,

   with angular momentum L=∑mNm ,

    and Hamiltonian
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rotating bosons in the LLL

BEC and vortex and vortex lattice
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• angular momentum L=0 : all bosons settle in the in the m=0
orbital and form a BEC

• at angular momentum L=N, the exact groundstate is

  with zc = (z1+z2+…)/N , which is a vortex

• still higher angular momentum: vortex lattice



rotating bosons in the LLL

formation of vortices and vortex lattice in rotating
trapped Rb atoms JILA, 2003



rotating bosons in the LLL

bosonic Laughlin state

• a configuration with vanishing interaction energy becomes
possible at ultra-fast rotation, L=N(N-1)
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It describes a quantum liquid state with on average one particle per
two vortices: ν = nb /nV = 1/2
    [not yet seen in experiments …]



electrons in the LLL

Plateaus in Hall resistance
indicate incompressible
quantum liquids at
   ν = ne /nΦ = 1/3, 2/5, 3/7, …
For ν=1/3 Laughlin proposed
the wavefunction
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electrons in the LLL

Composite Fermions (CF)

• CF obtained by attaching 2  flux quanta to each electron
• remaining electrons see reduced magnetic field; if these fill
  m Landau levels, the filling of the electrons is found to be
          ν = m/(2m+1) = 1/3, 2/5, 3/7, …
  [odd-denominator rule]



quasi-holes over Laughlin’s state

• fundamental excitation over ν=1/m
  Laughlin state associated to
  insertion of a flux quantum Φ0

• the resulting quasi-hole carries an electric charge

     q = σHall Φ0 = ν e2/h h/e = ν e = e/m



beyond Laughlin and CF

experimental findings:
• quantum Hall effect for half-
filled 2nd Landau level, violating
the odd-denominator rule
• spin-polarized electrons
• Fermi liquid effects at higher
temperatures

Pan et al (1997, 2001)
Willlett et al (2001)



beyond Laughlin and CF

Wilkin-Gunn 1999
Cooper-Wilkin-Gunn 2001

numerical findings:
• quantum Hall states other than Laughlin identified
in exact diagonalization studies of rotating bosons
in the LLL



Moore-Read states
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real space BCS wavefunction describing (chiral) p-wave
pairing of composite fermions:
             MR state <-> paired quantum Hall state

Moore-Read 1991 :

M=1: fermionic qH state
         proposed for half-filled
         2nd LL, ν = 5/2

M=0: bosonic qH state
         proposed for rotating
         bosons at ν = 1



non-Abelian quantum Hall states

nAqH states:
  quantum Hall states with pairing or clustering

• spin-polarized electrons, pairing
`Pfaffian state’ (Moore-Read 1991)

• spin-polarized electrons, order-k clustering
`parafermion states’ (Read-Rezayi 1999)

• spin-singlet electrons, order-k clustering
`NASS states’ (Ardonne-S 1999)

What are nAqH states?



non-Abelian quantum Hall states

quasi-hole excitations over nAqH states:

• due to pairing / clustering, there is a break-up of
the Laughlin quasi-hole

• a collection of fundamental quasi-holes forms a
multi-dimensional space

What is so special about nAqH states?



quasi-holes over nAqH states

the fundamental flux-quantum through a hole in a k-clustered
state is Φ0 / k   -->  fundamental particles cut into k pieces



quasi-holes over nAqH states

[MR state at ν = 1/2 ]
• the Laughlin quasi-hole (charge e/2 ) is cut in half: the
  fundamental quasi-holes have charge

 the dimension of the internal space for n quasi-holes is
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quasi-holes over nAqH states

[k=3 RR and k=2 NASS states]
• the dimension of the internal space for n quasi-holes is

    

[Fibonacci anyons]
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non-Abelian quantum Hall states

Braiding of quasi-hole excitations:

• braiding two quasi-holes around one another
induces matrix acting on the state vector

• successive braidings do not commute

Why the name?



braiding of quasi-holes

figure N. Bonesteel



non-Abelian quantum Hall states

Topological Quantum Computation

• state vector of collection of quasi-holes viewed
as qu-bit or quantum register

• information stored as `quantum knot’ -->
topological protection against decoherence

• logical gates implemented by braiding of quasi-
holes

Can nAqH states be useful?



topological protection



logical operations via braiding
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logical operations via braiding

quantum gates with Fibonacci anyons
with well-chosen iterations of        and       , logical gates can be
approximated to any desired precision!

figure: NOT gate with accuracy better than 10-3

                                 Bonesteel et al, 2005
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topological quantum computation

 Fibonacci anyon quantum Hall quantum computer

das Sarma-Nayak-Freedman 2005

 nAqH state
supporting
Fibonacci anyons



non-Abelian quantum Hall states

experimental signatures

• quasi-particle charge

• interferometry with double point-contact

• Coulomb blockade signatures

• …

How can nAqH states be detected?



ν = 5/2 : point contacts and interferometers

recent experiments on ν = 5/2 qH state
with single point contact [group Marcus
2007, group Heiblum 2007] and double
point contact [group Kang 2007, group
Willett 2008]



non-Abelian quantum Hall states

Recent progress

• quasi-particle charge: q=e/4  [Heiblum]   

• tunneling characteristic at point-contact [Marcus]    

• interferometry [Willett]   !?
• …

When will we know if nAqH states are for real?



Everything … about nAqH states …

Why the name?

How can we 
detect them?

What is so special 
about them? 

What are nAqH states?

Can they be 
useful?

When will we know 
if they are for real?

Your questions … 
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