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Clustering, caustics & collisions of
particles suspended in turbulent flows

-clustering of inertial particles in random & turbulent flows
-collision rate of advected particles  (small     )
-caustics
-collision speeds of inertial particles at large 
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Formulation of the problem
Dynamics of particles suspended in turbulent flows. 

Spherical particles of size   move independently.

Force on particles: drag force given by Stokes law                                   .         

Flow velocity field            random function 
with appropriate statistics.               

Dimensionless parameters      

                   

St Stokes number,        Kubo number,  Ku

,   ,     Kolmogorov length, time, velocity.   τ! u0

a

r̈ = γ
(

u(r, t) − ṙ

)

u(r, t)

St =
1
γτ

Ku =
u0τ

" log Ku

log St−1



Brownian motion
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Scottish botanist R. Brown (1773 - 1858) observed motion 
of pollen grains in water. 

In 1905 Einstein explained that their motion 
is due to the concerted effect of the small 
water molecules on the pollen grains. Water 
molecules (and thus pollen grains) move
the faster the higher the temperature. 
Prediction:
         
                             with                      .

Experimental verification:

Brownian motion, diffusion, random walk.

J. B. Perrin, Ann. de Chemie et de Physique (VIII) 18, 5 (1909)

∆x2
t = 2Dt D =

kBT

6πηa



Mixing by random stirring
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Computer simulation of       particles (red) in two-dimensional 
random flow (periodic boundary conditions in space)        
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a initial distribution, b particle positions after random stirring.



Clustering of inertial particles
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Computer simulation of       particles (blue) in two-dimensional smooth
random incompressible flow                u(r, t)
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Bec, Phys. Fluids 15 (2003) L81

Wang & Maxey,  J. Fluid. Mech. 256 (1993) 27
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An example
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An example: correlated random walks

Consider    random walks          (                    ), discrete in time (                )

with Gaussian random displacements                 satisfying

tn = nδtN xi(t) i = 1, . . . , N

xi(tn+1) = xi(tn) + ξ
(

xi(tn), tn
)

ξ
(

x(t), t
)

〈ξ
(

x, tn)〉 = 0

〈ξ
(

x, tn)ξ(y, tm)〉 = δnm ξ2
0 e−(x−y)2/2!2

xi(tn)

n

!
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An example: correlated random walks
Consider two particles with small 
initial separation          .  Does 
typically decrease as              ?
Linearise

δx(0) δx(t)
t → ∞

and determine

0 200 400 600

0.3

0.4

0.5

n

x
i
(t

n
)

λ = lim
t→∞

1

t

〈

log

∣

∣

∣

∣

δx(t)

δx(0)

∣

∣

∣

∣

〉

=
1

δt

〈

log

∣

∣

∣

∣

1 +
∂ξ

∂x

∣

∣

∣

∣

〉

δx(tn+1) = δx(tn)
(

1 +
∂ξ

∂x
(x(tn), tn)

)



Department of Physics

An example: correlated random walks

Assume that              is small (            ). 
Neglect        , expand logarithm and average

0 1 2

-0.2

0

0.2

λ
δt

ξ0/η

λ = lim
t→∞

1

t

〈

log

∣

∣

∣

∣

δx(t)

δx(0)

∣

∣

∣

∣

〉

=
1

δt

〈

log

∣

∣

∣

∣

1 +
∂ξ

∂x

∣

∣

∣

∣

〉

∂ξ/∂x ξ0 ! "

λ ≈ −

1

2δt

ξ2
0

$2
< 0

ξ0/"

−

ξ2
0

2"2

| · · · |



Department of Physics

Lyapunov exponents

λ1 = lim
t→∞

t
−1 loge(δrt)

λ1 + λ2 = lim
t→∞

t
−1 loge(δAt)

λ1 + λ2 + λ3 = lim
t→∞

t
−1 loge(δVt) .

Exponents                       describe rate of contraction or expansion of 
small length element       , area element        , and volume element         

λ1 > λ2 > λ3

δrt δAt δVt

J. Sommerer & E. Ott, Science 259 (1993) 351
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Stochastic differential equation
To calculate                       express spatial separations        (                 ) 
in terms of a co-moving coordinate system                              , momentum
separations        as                      . 

λ1 > λ2 > λ3

δpµ = R δrµ

R
′

µν(t) = nµ(t) · R(t)nν(t)

δrµ µ = 1, 2, 3

nµ(t) = O(t)nµ(0)
δpµ

λµ = 〈R′

µµ〉/m

and                                           as well as                                             . 
For rapidly fluctuating forcing (              ) obtain generalised diffusion 
equation for       which can be mapped onto a quantum problem.  
                                   

,                 is the strain tensor,

R
′

∂uµ/∂rν

F
′

µν(t) = nµ(t) · F(t)nν(t)

Fµν(t) = γm
∂uµ

∂rν

Ṙ
′ = −γR

′
− R

′2/m + [R′,O†
Ȯ]− + F

′

Ku! 1
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Mapping onto quantum problem
Generalised diffusion equation for          matrix      equivalent to
perturbation of nine-dimensional isotropic harmonic oscillator 

R
′

Coefficients         exactly known. Lyapunov exponents are obtained as 
matrix elements between ground state of       and the state       given by
               .  

H
(1)
ijk

Ĥ = Ĥ0 + I
1/2

Ĥ1

Ĥ0 |Q〉
Ĥ|Q〉 = 0

Ĥ0 = −

9∑

i=1

â
†
i
âi

Ĥ1 = −

∑

ijk

H
(1)
ijkâ

†
i (â

†
j + âj)(â

†
k + âk)

where                                                                              is dimensionless

measure of strain correlations.                                                                                

I =
1

2γ

∫

∞

−∞

dt
〈∂u1

∂x1

(r(t), t)
∂u1

∂x1

(r(0), 0)
〉

∝ Ku2St

3 × 3
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Perturbation expansion
λ1/γ = 3I − 29I

2
+ 564I

3

−14977I
4

+ 488784I
5
− 18670570I

6
+ · · ·

λ2/γ = 8I
2
− 459/2 I

3
+ 14281/2 I

4

−757273/3 I
5

+ 361653709/36 I
6

+ · · ·

λ3/γ = −3I − 9I
2
− 789/2 I

3
− 5787/2 I

4

−895169/3 I
5
− 101637719/36 I

6
+ · · · .

Mehlig & Wilkinson, Phys. Rev. Lett. 92 (2004) 250602
Duncan, Mehlig, Östlund & Wilkinson, Phys. Rev. Lett. 95 (2005) 165503

As             obtain known results for advective limit (                            )                                                                                          I → 0

Falkovich, Gawedzki & Vergassola, Rev. Mod. Phys. 73 (2001) 913

λ1 + λ2 + λ3 = 0

Valid for              . Expansion parameter                  .                                                                    Ku! 1 I ∝ Ku2St
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Perturbation series in one dimension
Obtain series expansion for λ1

l cl

1 1

2 5

3 60

4 1105

5 27120

6 828250

7 30220800

8 1282031525

9 61999046400

10 3366961243750

Coefficients satisfy recursion (            )

cl+1 = (6l − 2)cl +
l∑

j=1

cjcl+1−j

c1 = 1

D. Aldous, Brownian excursions, critical random graphs, and the multiplicative coalescent (1996)
J. Spencer, Enumerating Graphs and Brownian Motion, Comm. Pure Appl. Math. 1 (1997) 0291
P. Flajolet and P. Poblete and A. Viola, On the analysis of linear probing hashing, 
                                                                                          Algorithmica 22 (1998) 490
Sv. Janson, The Wiener index of simply generated random trees (2002)

Same coefficients appear in

.

.

λ1/γ = −

∞∑

l=1

clI
l
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Fractal clustering

∆ = −
1

|λ3|
(λ1 + λ2 + λ3)

Dimension deficit     . For particles in           incompressible flow estimated = 3∆
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From Pade-Borel resummation of series for 
Lyapunov exponents obtain good agreement with
direct numerical  simulations of particles suspended 
in  turbulent flow (   ,  from                                ).

Since       is not known for turbulent flow,
adjusted   -axis by setting                  .

Ku

Bec et al. nlin.CD/0606024     

Ku = 0.25x

Wilkinson, Mehlig, Östlund & Duncan, Phys. Fluids 19 (2007) 113303

.
Kaplan & Yorke (1979)

df = d − ∆

Fractal dimension of attractor in   -dimensional space

(when           ).  ∆ > 0

d

J. Sommerer & E. Ott, Science 259 (1993) 351
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Collision rate
Small     : advective collisions.

In turbulent flow:     

log St

Radv

lo
g

R

Rgas ∝ St−1/2

caustic activation        e−C/St

(single-scale random flow) 

X1

2a

X2

Radv = Kd nad E1/2

ν1/2

St

Large    :  collisions in gas of randomly moving particles.
Random single-scale flow:                       .

    

St
Rgas ∝ St−1/2

R

 (    dissipation,     viscosity,     number density,      constant).   E ν Kdn

Wilkinson, Mehlig & Bezuglyy, Phys. Rev. Lett. 97 (2006) 048501
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Advective collisions (                  )

R=−2an0

∫ 2π

0

dθ vr(2a, θ, t)Θ(−vr(2a, θ, t))χ(2a, θ, t)

Characteristic function                         for
particles which have already collided, other-
wise                       . Initially,            but in       
general:      depends upon 
history of flow.

Relative velocity     .  

Number density     .  

              

χ(2a, θ, t) = 0

χ(2a, θ, t) = 1 χ = 1

measures flux of particles into disc of radius      around test particle (radius   ).           2a

Consider two spatial dimensions. Collision rate (polar coordinates   ,    )     

   

χ

vr

n0

r θ

a

P. G. Saffman & J. S. Turner, J. Fluid. Mech. 1, 16 (1956)

ṙ = u(r, t)

X1

2a

X2
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Numerical results
Collision rate

Results of numerical simulations (point-particles advected in random flow
at small      , record collision when separation is for the first time         ): 

R=−2an0

∫ 2π

0

dθ vr(2a, θ, t)Θ(−vr(2a, θ, t))χ(2a, θ, t)

Ku < 2a

Andersson, Gustavsson, Mehlig & Wilkinson, Europhys. Lett. 80 (2007) 
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Theory in the limit of small Ku

t = 100 τ

t = 1000 τ

t = 20 τ
Problem:  in time-dependent flow, the separation  
may pass the collision region more than once 
(whether or not depends upon history of flow).

In the limit of small      , the separation       diffuses
with diffusion constant

The collision rate can be evaluated exactly in this limit.

In          dimensions (with               )

                             with

Ku Xt

Xt

Dij =
1

2

∫
∞

−∞

dt 〈[ui(X,t)−ui(0, t)][uj(X, 0)−uj(0, 0)]〉
Balkovsky, Falkovich & Fouxon, Phys. Rev. Lett. 86 (2001) 2790

d = 2

∼ u2
0τ

2"2
∝ Ku2

τ
R = 16πDn0a

2 D =
1
2

d
dX

D11(X = 0)

X =
∣∣X

∣∣
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One-dimensional model                              .  

Falkovich, Fouxon & Stepanov, Nature 419 (2002)151
Wilkinson & Mehlig, Phys. Rev. E 68 (2003) 04010, 
                                         Europhys. Lett. 71 (2005) 186

This singularity (`catastrophe´) is  a caustic.
Implications for collision rates.
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Caustics in turbulent aerosols

Michael Wilkinson1 and Bernhard Mehlig2

1Faculty of Mathematics and Computing, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, England.

2Physics and Engineering Physics, Gothenburg University/Chalmers, Gothenburg, Sweden.
(Dated: August 3, 2004)

Networks of caustics can occur in the distribution of particles suspended in a randomly moving
gas. These can facilitate coagulation of particles by bringing them into close proximity, even in cases
where the trajectories do not coalesce. We show that the long-time morphology of these caustic
patterns is determined by the Lyapunov exponents λ1, λ2 of the suspended particles, as well as the
rate J at which particles encounter caustics. We develop a theory determining the quantities J , λ1,
λ2 from the statistical properties of the gas flow, in the limit of short correlation times.

Aerosols are usually unstable systems, in that the sus-
pended particles eventually coagulate. Understanding
the process giving rise to this coagulation, and deter-
mining the time scale over which it occurs are important
questions in describing any aerosol system. If the gas
phase does not have macroscopic motion, the coagulation
may be effected by diffusion of the suspended particles,
or (if the suspended particles are of a volatile substance)
by Ostwald ripening. The coagulation process can be
greatly accelerated if the aerosol undergoes macroscopic
internal motion. Ultrasound, for example, has been used
to accelerate coagulation in aerosols [1]. Turbulent flow
could also play a role in the coagulation of suspended par-
ticles; this could be relevant in the coalescence of visible
moisture into rain droplets [2].

If suspended particles are simply advected in an in-
compressible flow, their density remains constant. Iner-
tial effects are therefore required for coagulation, unless
the flow exhibits significant compressibility. In earlier
work [3, 4] we discussed the motion of inertial particles
in a random velocity field. We showed that there is a
phase where the trajectories of the particles coalesce, so
that arbitrarily small particles coagulate. In the limit
where the correlation time τ of the flow approaches zero,
this path-coalescing phase only exists when the velocity
field is predominantly potential flow (such as the flow
due to sound waves) [4]. Turbulent fluid flow is expected
to be predominantly solenoidal, and it is of interest to
find alternative mechanisms of coagulation which oper-
ate outside the path-coalescence phase.

Here we describe an alternative mechanism facilitating
coagulation, illustrated in Fig. 1: we show the distribu-
tion of particles suspended in a randomly moving gas (the
equations of motion and statistics of the flow field are
given by eqns. (1) to (3) below). The large panel shows
the distribution of particles after a short time, starting
from a random scatter with uniform density. The parti-
cles cluster onto a network of caustic lines, analogous to
the networks of optical caustics that can be seen on the
bottom of a swimming pool [5]. The phenomenon we de-
scribe here is a new mechanism by which aerosol particles
are brought into close proximity. The remaining parts
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FIG. 1: Distribution of inertial particles suspended in a ran-
domly moving fluid (blue corresponds to lowest density, yellow
to highest). The initial distribution is a random scatter. The
large panel shows caustics at short time. Panels (a)-(c) show
the long-time behaviour. In all cases, the region is the unit
square, the mean particle density is 2.5 × 105, m = 1, and
there is potential flow (with parameters ξ = 0.03, σ = 0.01,
δt = 0.05, see text). Main panel: γ = 0.53, t = 5, (a):
γ = 1.18, t = 500, (b): γ = 0.72, t = 125, (c): γ = 0.21,
t = 125. The three cases correspond to: (a) λ2 < λ1 < 0, (b)
λ1 > 0, λ1 + λ2 < 0, and (c) λ1 > 0, λ1 + λ2 > 0, see text.

of Fig. 1 show the distribution of particles after a long
time, in three different cases: part (a) shows the path-
coalescence phase where the trajectories condense onto
points. Parts (b) and (c) show two cases where there is
no path coalescence, but a steady state with significant
inhomogeneities of density due to caustics: these have
very different morphologies, depending on the parameter
values, as we shall show.

Fig. 1 is surprising because it is be expected that ran-
dom movement of uniformly distributed particles would
leave the distribution uniform. The following questions
naturally arise. First, why do the particle trajectories
coalesce into points in Fig. 1(a)? This phenomenon was
first noted in [6] and subsequently analysed in detail in
[3, 4] (c.f. also the theory developed at the end of this pa-

                                                                                                                   copyright A. W. Peet

Caustics
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Caustic activation
One-dimensional model                               .

Exact result for rate of caustic formation in 
the limit of small

where      is the Airy function,                    , and `action´       .

Caustic formation is an activated process (compare Arrhenius law
                      ).
Similar in two and three dimensions, but `action´ not known analytically.

Ai

1/(6ε2)

ẍ = γ(u(x, t) − ẋ)

Ku

r = r0 e−T0/T

Duncan, Mehlig, Östlund & Wilkinson, Phys. Rev. Lett. 95 (2005) 165503

1/6

∼ 1
2π

e−1/(6I)

I ∝ Ku2St

J /γ = − 1
2π

Im
[ 1√

z

Ai′(z)
Ai(z)

]

z=(i
√
I)−4/3/4
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   -dependence of collision rate

10-2 100 102

10-4

10-2

100

St

R

Collision rate well approximated by                                              .
                      
Remember                         and                       .

St

10-2 100 102

10-4

10-2

100

St

R

R = Radv + exp(−S/I)Rkin

J/γ ∼ e
−S/I

I ∝ Ku
2
St
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Relative speeds in turbulence at large 
Inertial range becomes important (
( here       is component of                                           and                  ,
                       Kolmogorov scale).  Grain dynamics in accretion disks.

Model: distribution of collision speeds non-Gaussian:

where     and     are constants and     is  rate of dissipation per unit mass.
This result implies

                                 (dimensional analysis)

                                 (Epstein damping:            )

St

P (∆V ) = A e−C|∆V |4/3γ2/3E−2/3

A C E

∆V ∼
√
E/γ

Mehlig, Wilkinson & Uski, Phys. Fluids 19 (2007) 098197
Wilkinson, Mehlig & Uski, Astrophys. J. Suppl. Ser. 176 (2008) 484
Gustavsson, Mehlig, Wilkinson & Uski, Phys. Rev. Lett. 101 (2008) 174503

Rgas ∼ St1/2 St ∼ a

(a)

(b)

(c)

a [m]

a [m]

vcr

√
〈∆v2〉 [m/s]

P (a)

10−6

10−4

10−2

1

10−7

10−7

10−5

10−5

10−3

10−3

10−1

10−1

〈∆u(l, t)∆u(l, 0)〉 = (El)2/3f(tE1/3/l2/3)
∆u ∆u(l, t) = u(l, t)− u(0, t) !! l! L

! ∼ (ν3/E)1/4
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One-dimensional model
Assume               .    Dimensionless variables            ,                     , and
                       . When        fluctuates rapidly, can approximate dynamics
by Langevin equation

with random increments

with diffusion constant                          .

Parameters    and    . Relevant choice:               
and            .
Asymptotically exact WKB solution of corresponding
Fokker-Planck equation for                  .

Ku! 1 t′ = γt ∆x = ∆X/!
∆v = ∆V/(!γ) ∆u

d∆x = ∆v dt′ , d∆v=−∆vdt′ + δw

〈δw〉 = 0 〈δw2〉=2D(∆x)dt′

D(∆x) = ε|∆x|α

ε α
ε = 1

α = 2/3

α = 2/3

α = 4/3

ρ(∆x,∆v)
Mehlig, Wilkinson & Uski, Phys. Fluids 19 (2007) 098197
Gustavsson, Mehlig, Wilkinson & Uski, Phys. Rev. Lett. (2008) in press
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Conclusions
Clustering of inertial particles
   -exact solution for              com-
    pared to DNS (                               )
    Parameter     from DNS? 

Caustics
   -activated caustic formation            ,
        determined from DNS  
Collision rate of advected particles
   -exact result for             , influence of clustering
   -expect                                    in turbulent flows
    constant      ?

Collision speeds of inertial particles at large 
   -exact result at             :
   -constant from DNS?
                 

St

log Ku

log St−1
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Caustics in turbulent aerosols

Michael Wilkinson1 and Bernhard Mehlig2

1Faculty of Mathematics and Computing, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, England.

2Physics and Engineering Physics, Gothenburg University/Chalmers, Gothenburg, Sweden.
(Dated: August 3, 2004)

Networks of caustics can occur in the distribution of particles suspended in a randomly moving
gas. These can facilitate coagulation of particles by bringing them into close proximity, even in cases
where the trajectories do not coalesce. We show that the long-time morphology of these caustic
patterns is determined by the Lyapunov exponents λ1, λ2 of the suspended particles, as well as the
rate J at which particles encounter caustics. We develop a theory determining the quantities J , λ1,
λ2 from the statistical properties of the gas flow, in the limit of short correlation times.

Aerosols are usually unstable systems, in that the sus-
pended particles eventually coagulate. Understanding
the process giving rise to this coagulation, and deter-
mining the time scale over which it occurs are important
questions in describing any aerosol system. If the gas
phase does not have macroscopic motion, the coagulation
may be effected by diffusion of the suspended particles,
or (if the suspended particles are of a volatile substance)
by Ostwald ripening. The coagulation process can be
greatly accelerated if the aerosol undergoes macroscopic
internal motion. Ultrasound, for example, has been used
to accelerate coagulation in aerosols [1]. Turbulent flow
could also play a role in the coagulation of suspended par-
ticles; this could be relevant in the coalescence of visible
moisture into rain droplets [2].

If suspended particles are simply advected in an in-
compressible flow, their density remains constant. Iner-
tial effects are therefore required for coagulation, unless
the flow exhibits significant compressibility. In earlier
work [3, 4] we discussed the motion of inertial particles
in a random velocity field. We showed that there is a
phase where the trajectories of the particles coalesce, so
that arbitrarily small particles coagulate. In the limit
where the correlation time τ of the flow approaches zero,
this path-coalescing phase only exists when the velocity
field is predominantly potential flow (such as the flow
due to sound waves) [4]. Turbulent fluid flow is expected
to be predominantly solenoidal, and it is of interest to
find alternative mechanisms of coagulation which oper-
ate outside the path-coalescence phase.

Here we describe an alternative mechanism facilitating
coagulation, illustrated in Fig. 1: we show the distribu-
tion of particles suspended in a randomly moving gas (the
equations of motion and statistics of the flow field are
given by eqns. (1) to (3) below). The large panel shows
the distribution of particles after a short time, starting
from a random scatter with uniform density. The parti-
cles cluster onto a network of caustic lines, analogous to
the networks of optical caustics that can be seen on the
bottom of a swimming pool [5]. The phenomenon we de-
scribe here is a new mechanism by which aerosol particles
are brought into close proximity. The remaining parts
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FIG. 1: Distribution of inertial particles suspended in a ran-
domly moving fluid (blue corresponds to lowest density, yellow
to highest). The initial distribution is a random scatter. The
large panel shows caustics at short time. Panels (a)-(c) show
the long-time behaviour. In all cases, the region is the unit
square, the mean particle density is 2.5 × 105, m = 1, and
there is potential flow (with parameters ξ = 0.03, σ = 0.01,
δt = 0.05, see text). Main panel: γ = 0.53, t = 5, (a):
γ = 1.18, t = 500, (b): γ = 0.72, t = 125, (c): γ = 0.21,
t = 125. The three cases correspond to: (a) λ2 < λ1 < 0, (b)
λ1 > 0, λ1 + λ2 < 0, and (c) λ1 > 0, λ1 + λ2 > 0, see text.

of Fig. 1 show the distribution of particles after a long
time, in three different cases: part (a) shows the path-
coalescence phase where the trajectories condense onto
points. Parts (b) and (c) show two cases where there is
no path coalescence, but a steady state with significant
inhomogeneities of density due to caustics: these have
very different morphologies, depending on the parameter
values, as we shall show.

Fig. 1 is surprising because it is be expected that ran-
dom movement of uniformly distributed particles would
leave the distribution uniform. The following questions
naturally arise. First, why do the particle trajectories
coalesce into points in Fig. 1(a)? This phenomenon was
first noted in [6] and subsequently analysed in detail in
[3, 4] (c.f. also the theory developed at the end of this pa-

e−C/St

Ku! 1
R = Kdn0a

d(E/ν)1/2

Kd

∆V = const.× E/γKu! 1

Pumir & Falkovich, J. Atm. Sci 64 (2007)C
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Determine universal constants (DNS) 
Inertial collisions at large     :

Advective collisions at small     :

Fractal dimension of inertial particles determined by

Caustic activation 

St

R = K(2)
d nad E1/2

ν1/2

R = K(1)
d nad−1 E1/2

γ1/2

St

ε2 =
K(3)

d

γ

E1/2

ν1/2
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