

Stockholm University, Physics Colloquium

"High-precision Penning trap experiments with exotic ions"

19.02.2009

Setup and measurement procedure

Precision mass and g-factor measurements

Part I

High-precision mass measurements

Applications of precision masses

High-accuracy mass measurements allow one to determine the atomic and nuclear binding energies reflecting all forces in the atom/nucleus.

Requirements for mass spectrometry

K. B., Phys. Rep. 425, 1-78 (2006)	δm/m
General physics & chemistry	≤ 10 -5
Nuclear structure physics - separation of isobars	≤ 10 -6
Astrophysics - separation of isomers	≤ 10 -6
Weak interaction studies	≤ 10 ⁻⁸
Metrology - fundamental constants	≤ 10 ⁻⁹
CPT tests	≤ 10 -10
QED in highly-charged ions	≤ 10 -11

A brief history of mass spectrometry

FOR NUCLEAR PHYSICS

PLANCK INSTIT

MAX]

CPT, ISOLTRAP, JYFLTRAP, LEBIT, SHIPTRAP

Facilities for mass spectrometry

Klaus.blaum@mpi-hd.mpg.de

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

Principle of Penning trap mass spectrometry

TOF cyclotron resonance detection

The ISOLTRAP experiment

Investigation of nuclear halos

... via nuclear mass (binding energy) and charge radii measurements!

Applications in astrophysics

First results from TRIGA-TRAP

Isobaric Multiplet Mass Equation

Mass formula for multiplets of nuclear states with same mass and isospin

Most stringent test of IMME

Klaus.blaum@mpi-hd.mpg.de

MAX PLANCK INSTITU FOR NUCLEAR PHYSIC

Determination of the ${}^{3}T \rightarrow {}^{3}He$ Q-value

Important parameter for the determination of the electron neutrino rest mass.

18 615 18 610 зн [Counts ³He 18 605 $m_{\nu}^{2} = 0$ 18 600 Q-Value [eV] VanDyck 18 595 $m_{z} < 0$ $m_{\nu} > 0$ Penning Traps 18 keV 18 590 e⁻ energy FTICR Q-value of Tritium beta decay 18 585 $^{3}_{1}H \rightarrow ^{3}_{2}He + e^{-} + \overline{\nu}$ **B-Spectrometers** (Curie plots) 18 580 Q=18 589.8 (1.2) eV SMILETRAP SMILETRAP: Sz. Nagy et al., Europhys.Lett. 74, 404 (2006) 18 575

Klaus.blaum@mpi-hd.mpg.de

MAX PLANCK INSTITU FOR NUCLEAR PHYSIC

... in the new lab at MPIK

The KATRIN spectrometer

MAX PLANCK IN FOR NUCLEAR

PHYSICS

ES

The KATRIN spectrometer

MAX PLANCE CENTLE PHAN

Recent results of fundamental studies

V_{ud} – is unitarity violated in quark mixing?

F. Herfurth *et al.*, Eur. Phys. J. A 15, 17 (2002)
A. Kellerbauer *et al.*, Phys. Rev. Lett. 93, 072502 (2004)
M. Mukherjee *et al.*, Phys. Rev. Lett. 93, 150801 (2004)
S. George *et al.* Phys. Rev. Lett. 98, 162501 (2007)

Are there scalar currents present in the Weak Interaction? K. Blaum *et al.*, Phys. Rev. Lett. 91, 260801 (2003)

Stringent test of the isobaric multiplet mass equation (IMME)

F. Herfurth *et al.*, Phys. Rev. Lett. 87, 142501 (2001) K. Blaum *et al.*, Phys. Rev. Lett. 91, 260801 (2003)

Population inversion of nuclear states, nuclear halos, and drip lines:

J. Van Roosbroeck *et al.*, Phys. Rev. Lett. 92, 1112501 (2004)
Sz. Nagy *et al.*, Phys. Rev. Lett. 96, 163004 (2006)
C. Rauth *et al.*, Phys. Rev. Lett. 100, 012501 (2008)
M. Dworschak *et al.*, Phys. Rev. Lett. 100, 072501 (2008)
R. Neugart *et al.*, Phys. Rev. Lett. 101, 132502 (2008)
W. Geithner *et al.*, Phys. Rev. Lett. 101, 252502 (2008)
S. Baruah *et al.*, Phys. Rev. Lett. 101, 262501 (2008)

Does QED fail in strong fields?

I. Bergström et al., Eur. Phys. J. D 22, 41 (2003)

$$M = a + bT_z + cT_z^2 + dT_z^3$$

Commonly used form ?

Part II

High-precision *g*-factor measurements

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

The g-factor

free lepton: $g_s = g$ -factor of the spin

g-factor of the proton and antiproton

Test of CPT invariance

- Currently believed to hold
- CPT transforms particle into its antiparticle (P. Dirac 1928)

$$g_p = 2 \cdot \frac{\omega_L}{\omega_c}$$

 ω_c : cyclotron frequency ω_L : Larmor frequency

PDG: $g_{D} = 2 \times 2.792847337(29)$

 $g_{\overline{p}} = 2 \times 2.800(8)$

With our double Penning-trap technique we aim for $\delta g/g = 10^{-9}$.

Measurement principle

MAX PLANCK INSTITU For Nuclear Physic

Non-destructive ion detection

Operation of traps and electronics at cryogenic (4 K) temperature.

C. Weber, PhD thesis, University of Heidelberg (2004) and C. Weber et al., Eur. Phys. J A 25, 65 (2005)

Hybrid analysis trap

Manufactured at the Institute for <u>M</u>icrotechnique <u>M</u>ainz (IMM).

J. Verdú et al., AIP Conference Proceedings 796, 260-265 (2005)

J. Verdú et al., New J. Phys. 10, 103009 (2008)

Single proton signals

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

MAX PLANCE CESELL REHAP

Future Penning trap facilities at FAIR

Summary

High-accuracy experiments with stored ions in Penning traps have a broad range of applications!

- Fundamental tests:
 - Unitarity test of the CKM quark-mixing matrix
 - Test of weak interaction
 - Test of CPT invariance
 - Test of bound-state QED
- Determination of fundamental constants:
 *m*_e, *m*_p, α, *N_ah*, μ, …

The Mainz-MPIK Penning trap team

In collaboration with:

D. Beck, M. Block, J. Crespo, R. van Dyck, S. Eliseev, F. Herfurth, A. Kellerbauer,
H.-J. Kluge, M. Kretzschmar, Yu. Novikov, D. Pinegar, W. Quint, R. Schuch,
L. Schweikhard, N. Trautmann, J. Walz, Ch. Weinheimer, G. Werth,
and the ISOLTRAP and SHIPTRAP Collaboration ...

Thanks a lot for the invitation and your attention!

Email: klaus.blaum@mpi-hd.mpg.de WWW: www.mpi-hd.mpg.de/blaum/

