Cosmology After WMAP (5)

David Spergel

Stockholm

June 2008

Standard cosmological model Still Fits the Data

- General Relativity + Uniform Universe Big Bang
 - Density of universe determines its fate + shape
- Universe is flat (total density = critical density)
 - Atoms 4%
 - Dark Matter 23%
 - Dark Energy (cosmological constant?) 72%
- Universe has tiny ripples
 - Adiabatic, scale invariant, Gaussian Fluctuations
 - Harrison-Zeldovich-Peebles
 - Inflationary models

Quick History of the Universe

- Universe starts out hot, dense and filled with radiation
- As the universe expands, it cools.
 - During the first minutes, light elements form
 - After 500,000 years, atoms form
 - After 100,000,000 years, stars start to form
 - After 1 Billion years, galaxies and quasars

COSMIC HISTORY

Thermal History of Universe

Growth of Fluctuations

•Linear theory

Basic elements have
been understood for
30 years (Peebles,
Sunyaev &
Zeldovich)

•Numerical codes agree at better than 0.1% (Seljak et al. 2003)

SMALL-SCALE FLUCTUATIONS OF RELIC RADIATION*

R. A. SUNYAEV and YA. B. ZELDOVICH

Institute of Applied Mathematics, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

(Received 11 September, 1969)

Abstract. Perturbations of the matter density in a homogeneous and isotropic cosmological model which leads to the formation of galaxies should, at later stages of evolution, cause spatial fluctuations of relic radiation. Silk assumed that an adiabatic connection existed between the density perturbations at the moment of recombination of the initial plasma and fluctuations of the observed temperature of radiation $\delta T/T = \delta \rho_m/3\rho_m$. It is shown in this article that such a simple connection is not applicable due to:

The long time of recombination;

(2) The fact that when regions with $M < 10^{15} M_{\odot}$ become transparent for radiation, the optical depth to the observer is still large due to Thompson scattering;

(3) The spasmodic increase of δgm/gm in recombination.

As a result the expected temperature fluctuations of relic radiation should be smaller than adiabatic fluctuations. In this article the value of $\delta T/T$ arising from scattering of radiation on moving electrons is calculated; the velocity field is generated by adiabatic or entropy density perturbations. Fluctuations of the relic radiation due to secondary heating of the intergalactic gas are also estimated. A detailed investigation of the spectrum of fluctuations may, in principle, lead to an understanding of the nature of initial density perturbations since a distinct periodic dependence of the spectral density of perturbations on wavelength (mass) is peculiar to adiabatic perturbations. Practical observations are quite difficult due to the smallness of the effects and the presence of fluctuations connected with discrete sources of radio emission.

Sunvaev & Zeldovich

THE ASTROPHYSICAL JOURNAL, 162:815-836, December 1970 (© 1970 The University of Chicago All rights reserved Printed in U.S.A.

PRIMEVAL ADIABATIC PERTURBATION IN AN EXPANDING UNIVERSE*

P. J. E. PEEBLES[†]

Joseph Henry Laboratories, Princeton University

AND

J. T. Yu‡

Goddard Institute for Space Studies, NASA, New York Received 1970 January 5; revised 1970 A pril 1

ABSTRACT

The general qualitative behavior of linear, first-order density perturbations in a Friedmann-Lemaître cosmological model with radiation and matter has been known for some time in the various limiting situations. An exact quantitative calculation which traces the entire history of the density fluctuations is lacking because the usual approximations of a very short photon mean free path before plasma recombination, and a very long mean free path after, are inadequate. We present here results of the direct integration of the collision equation of the photon distribution function, which enable us to treat in detail the complicated regime of plasma recombination. Starting from an assumed initial power spectrum well before recombination, we obtain a final spectrum of density perturbations after recombination. The calculations are carried out for several general-relativity models and one scalar-tensor model. One can identify two characteristic masses in the final power spectrum: one is the mass within the Hubble radius ct at recombination, and the other results from the linear dissipation of the perturbations prior to recombination. Conceivably the first of these numbers is associated with the great rich clusters of galaxies, the second with the large galaxies. We compute also the expected residual irregularity in the radiation from the primeval fireball. If we assume that (1) the rich clusters formed from an initially adiabatic perturbation and (2) the fireball radiation has not been seriously perturbed after the epoch of recombination of the primeval plasma, then with an angular resolution of 1 minute of arc the rms fluctuation in antenna temperature should be at least $\delta T/T = 0.00015$.

INTRODUCTION

CMB Overview

$$T(\hat{n}) = \sum_{lm} a_{lm} Y_{lm}(\hat{n})$$

$$c_{l} = \frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^{2}$$

$$T_l = \frac{l(l+1)c_l}{2\pi}$$

- We can detect both CMB temperature and polarization fluctuations
- Polarization Fluctuations can be decomposed into E and B modes

$$\theta \sim \! 180/\ell$$

ADIABATIC DENSITY FLUCTUATIONS

ISOCURVATURE ENTROPY FLUCTUATIONS

Determining Basic Parameters

Baryon Density $\Omega_{b}h^{2} = 0.015, 0.017..0.031$ also measured through D/H

Determining Basic Parameters

Matter Density $\Omega_{\rm m}h^2 = 0.16,...,0.33$

Determining Basic Parameters

Angular Diameter Distance

w = -1.8, ..., -0.2

When combined with measurement of matter density constrains data to a line in $\Omega_{\rm m}$ -w space

Wilkinson Microwave Anisotropy Probe

A partnership between NASA/GSFC and Princeton

Science Team:

NASA

Michael Greason **Bob Hill** Al Kogut Nils Odegard Janet Weiland

Brown

UBC

Texas

UCLA

Chicago Stephan Meyer

Eiichiro Komatsu

Toronto Michael Nolta

Princeton

David Sperge Joanna Dunkley

Johns Hopkins

Ben Gold

WMAP Spacecraft

What is New in the Analysis?

- More data (errors reduced by 3/5)
- > Better beam model
- Improvements in gain model
 - Calibration uncertainty drops from 0.5% to 0.2%
- Improvements in likelihood function
- > Improved Sky Mask
- > Better estimators for non-linearity

Beam Modelling

 Full Vector EM modelling of distortions in primary and secondary mirror
 Calibration off of Jupiter, Moon, and ground-based testing

Beam Modelling

 Full Vector EM modelling of distortions in primary and secondary mirror
 Calibration off of Jupiter, Moon, and ground-based testing

Beam Models

K - 22GHz

Ka - 33GHz

Q - 41GHz

V - 61GHz

Q band V band W band

Foregrounds

Galactic

- Synchrotron (polarized)
- Free-Free
- Thermal Dust
- Spinning Dust
- > Radio Sources

Fluctuations Appear to be Gaussian

FOREGROUND CORRECTED MAP

Reduced $X^2 = 1.06$ for 1 = 33-1000

Atomic Density	$\Omega_b h^2$	$2.273 \pm 0.062 \times 10^{-2}$
Matter Density	$\Omega_m h^2$	0.1326 ± 0.0063
Amplitude	σ_8	0.796 ± 0.036
Spectral Index	n_s	$0.963^{+0.014}_{-0.015}$
Age	t_0	13.69 ± 0.13
Optical Depth	au	0.087 ± 0.017

QuickTime™ and a decompressor are needed to see this picture.

Reichardt et al. 2008 astro-ph/0801.1491

QUAD

Pryke et al. 0805.1944
From Baby Pictures to Today's Universe

Consistency

- Baryon Oscillations
- Supernova
- Weak & Strong Lensing
- Cluster Abundances
- Lyman α Forest

- Hubble Constant
- Stellar Ages
- Deuterium Abundance
- Large Scale Structure
- > Velocity Field

Geometry

Dark Energy

Vikhlinin et al. (2008)

Too Little Large Scale Power?

Lack of large scale power

- Seen in COBE but clearer now
- Is the universe finite?
- Are we seeing a characteristic scale?
- Is it just chance?

Is the Universe Finite or Infinite?

Work with Neil Cornsih, Glenn Starkman, Eiichrio Komatsu and Joey Key Shapiro

Topology

Other Tilings

Infinite number of tiling patterns

This one only works in hyperbolic space

Spherical Topologies

This example only works in spherical space

Dodecahedral Space

Tiling of the three-sphere by 120 regular dodecahedrons

The microwave background in a multi-connected universe

Matched circles in a three torus universe

Statistics for matched circles

Spatial comparisons:

Use a RES r Healpix grid (3 x 2^{2r+2} pixels) Draw a circle radius α around center, linearly interpolate values at 2^{r+1} points around circle

 $S_{12} = 2 < T_1(\phi) T_2(\phi) >_{\phi} / (< T_1(\phi)^2 >_{\phi} + < T_2(\phi)^2 >_{\phi})$

Perfect match $S_{12} = 1$ Random circles $< S_{12} > = 0$ Fourier space comparisons:

 $T_{i}(\phi) = \sum_{m} T_{im} e^{im\phi}$ $S_{ij}(\beta) = 2\sum_{m} mT_{im}T_{jm} e^{-im\beta} / \sum_{m} m(|T_{im}|^{2} + |T_{jm}|^{2}) \quad \beta \text{ is relative phase}$ We write as: $S_{ij}(\beta) = \sum_{m} s_{m} e^{-im\beta}$ and calculate $S_{ij}(\beta)$ as an FFT of s_{m} for a n / logn speed-up (to n⁴ log(n))

Matched Circles in Simulations

In a blind test >99% of circles found in a "deliberately difficult" universe

Blind test (simulated sky supplied by A. Riazuelo):

Manifold (S_3/Z_2) with 98304 visible circle pairs at each radius, α Parameters chosen to maximize ISW, Doppler de-coherence --"worst case".

α	missed	made	miss	sed	made		false-negative	
	1st cut	1st cut	2nd	cut	2nd cut		rate	
24	334	. 979	70	1642	2 963	328	2%	
30	154	981	50	118	98032		0.4%	
36	55	98249	11	9823	38	0.07	%	
42	19	98285	3	9828	82	0.02	%	
48	13	98291	2	9828	89	0.02	%	
54	8	98296	0	9829	96	< 0.0	1%	
60	1	98303	0	983(03	< 0.0	1%	
65	2	98302	0	983(02	< 0.0	1%	
71	5	98299	0	9829	99	< 0.0	1%	
76	1	98303	0	983(03	< 0.0	1%	
80	2	98302	0	983(02	< 0.0	1%	
85	0	98304	0	983(04	0%		
90	0	98304	0	983	04	0%		

What we see in the WMAP data:

UNIVERSE IS BIG!

Conclusions

Cosmology is in a golden age!

Advances in technology are enabling us to probe the physics of the very early universe and the birth of structure.
 So far, the standard model appears to fit the

data, but stay tuned!

Coming Soon!

THANK YOU !

Parameters

- Improved (and higher) values for matter density and amplitude of fluctuations
- No significant change in other parameters
- Optical depth is robust against treatments of foregrounds
- Adding SN + BAO data improves matter density constraint and sharpens parameter measurements

Baryon Density

Pettini et al. (astro-ph/0805.0594) report Ω_bh² = 0.0213 +/- 0.010

WMAP + D/H measurements imply n_s =0.959 +/- 0.013

Reionization

- > Measurement of optical depth improves from 3 to 5 σ
- > Reionization is an extended process
- Detailed study of sensitivity to foreground removal

Neutrinos

Presence of neutrinos have several effects:

- Change matter/radiation
 transition
- Shift peak position (freestreaming)
- Suppress growth of structure (if massive)

Inflation

- Spectral index < 1</p>
- Constraint on tensor modes improves (particularly with SN+BAO in LCDM)

Inflationary Models

Multi field models

One field models

Cosmology Now Has A Standard Model

Basic parameters are accurately determined

- Improved constraints on parameters
- CMB best fit consistent with other measurements
- Mysteries remain: dark matter, dark energy, physics of inflation
 - WMAP observations provides constraints on models beyond the standard model
 - Hints of non-Gaussianity but marginally at 2 σ; more data needed
- More to come! Planck, ACT, ….

Dark Energy

- WMAP data constrains angular distance to z = 1090
- Amplitude of fluctuations at z = 1090

Amplitude Constraints

- Viklinin et al. used Chandra to determine "Yx" for a sample of 400 nearby (z ~0.05) and distant (z ~0.55) sample
- > Clusters measure σ_8 and Ω_m . When combined with WMAP measurements of primordial amplitude yield interesting constraints on w.

Photos: M. Limon

First Results from ACT

Lensing: Black Contours X-ray: Red Contours SZ: Color green: positive blue: negative

"Bullet" Cluster (6 minutes of integration)

ACT 2007 Expected Power Spectrum

QuickTime™ and a decompressor are needed to see this picture.

ACT should have 20 times more data in the 2008 season!

NSF funding began Jan 2004

ACT Institutions

Hunting for Non-Gaussianities

- Axis of Evil (Land and Maguiejo)
- > Cold Spot (Cruz et al.)
- Too few cold and hot spots (Larson and Wandelt)
- Vorticity and Shear
- Features in the power spectrum
- > Bianchi VIIh models
- Alignment of quadrupole and octopole

Fluctuations Appear to be Gaussian

Cold Spot Tests

Is it a low density region?
Minnesota group (Rudnick et al.)
Is it a texture?

Key observational tests

- TE correlation test if fluctuation is adiabatic fluctuation at SLS
- Small scale CMB measurements
 - Low density region will produce significant lensing

Primordial Skewness

Spergel and Goldberg 1999

Komatsu and Spergel 2001

$$\Phi(\mathbf{x}) = \Phi_L(\mathbf{x}) + f_{NL} \left(\Phi_L^2(\mathbf{x}) - \left\langle \Phi_L^2(\mathbf{x}) \right\rangle \right)$$

QuickTime[™] and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

Non-linear Bispectrum Terms

Spergel and Goldberg 1999

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

> QuickTime[™] and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

Bispectrum changes sign...

Bispectrum

Figure 13: Plots of the bispectrum for the local case (on the left) and for the equilateral case (on the right) for l < 1800. Note how in the equilateral case all perturbations off the central axis are suppressed

Fergusson and Shellard 2007

f_{NL} in WMAP Data?

- Statistical significance
 overestimated (choose highest amplitude cut and frequency combination)
 - Most of the signal is coming from triangles that don't have most of the S/N!
 - S/N goes up as errors goes up! Adding very noisy data increases the signal-something is odd

		f	NL.		
	$f_{\rm sky}=94.2\%$	$\mathbf{f}_{\rm sky}=84.7\%$	$\mathbf{f}_{\rm sky}=76.8\%$	$\mathbf{f}_{\mathrm{sky}} = 64.3\%$	
	Kp12	Kp2	Kp0		
350	-3145.22	-26.68	34.62	19.24	
450	-1425.06	-15.63	67.94	64.69	Minimum
550	-1509.92	-13.09	79.99	83.53	
650	-1559.91	-22.43	79.18	81.29	variance
750	-1575.11	-22.81	86.81	86.52	
			The sa seen i	ame strange n both VW	jumps are and QVW
of	data		The sa seen i	ame strange n both VW	jumps are and QVW
of	data	The m	The sa seen i	ame strange n both VW	and QVW

$\ell_{\rm max}$	f _{NL}					
	$\mathbf{f}_{\rm sky}=94.2\%$	$f_{\rm sky}=84.7\%$	$f_{\rm sky}=76.8\%$	$f_{\rm sky}=64.3\%$		
	Kp12	Kp2	Kp0			
350	-2383.67	-75.16	24.91	8.32		
450	-2791.83	-79.79	55.36	65.31		
550	-3135.82	-93.49	65.57	79.93		
650	-3307.15	-93.7	62.91	77.02		
750	-3368.26	-108.23	64.75	78.35		

TABLE I: Measured non-linear coupling parameter $f_{\rm NL}$ using the coadded Q+V+W WMAP 3-year maps, as a function of mask (i.e. f_{sky}) and maximum multipole used in the analysis ℓ_{max} . 10% more data (Kp2 - Kp0) change fNL by 172! This implies that f_NL in the Kp2-Kp0 region is huge (5 σ detection)

detection).

Minimum

variance

5 year Results

- We do see a positive fNL but its amplitude is only ~2 s
- Amplitude is lower than values claimed by Yadav and Wandelt; however, we see a consistent set of values as a function of sky cut
- Still see contamination effects in Q band
- Need more data to make a convincing case

Band	Mask	$l_{\rm max}$	$f_{NL}^{\rm local}$	$\Delta f_{NL}^{\rm local}$	bsrc
V+W	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	KQ85	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	Kp0	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^{a}$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

Q	Raw	$KQ75p1^{a}$	-42 ± 45
v	Raw	KQ75p1	38 ± 34
W	Raw	KQ75p1	43 ± 33
Q	Raw	KQ75	-42 ± 48
v	Raw	KQ75	41 ± 35
W	Raw	KQ75	46 ± 35
Q	Clean	KQ75p1	9 ± 45
V	Clean	KQ75p1	47 ± 34
w	Clean	KQ75p1	60 ± 33
Q	Clean	KQ75	10 ± 48
V	Clean	KQ75	50 ± 35
W	Clean	KQ75	62 ± 35
	P	VOAF	0 00

