Water at biological membranes: structure, dynamics and biomolecular sensing

Mischa Bonn FOM-Institute AMOLF, Amsterdam, the Netherlands (bonn@amolf.nl)

Stockholm, 15/5/08

Acknowledgements

• Avishek Ghosh, Marc Smits, Jens Bredenbeck, Maria Sovago, Sjors Wurpel, Martin Sterrer, Michiel Muller, Huib Bakker &co

Water at biological membranes: structure, dynamics and biomolecular sensing

<u>Outline</u>

Introduction

Structure

Sensing

Structure??

Dynamics

Structure from dynamics

Conclusions

Water at biological membranes: structure, dynamics and biomolecular sensing

<u>Outline</u>

Introduction

Structure

Sensing

Structure??

Dynamics

Structure from dynamics

Conclusions

Biological membranes

hydrophobic alkyl chains

hydrophilic "polar" head group

Biological membranes

- Important biomolecular interactions at cell membrane
- Functionality = interplay between lipids/proteins/water

Most information on membranebound water has been obtained through MD simulations:

- residence time: exchange with bulk on ps-ns timescales
- preferential orientation
- heterogeneity??

MD simulation (~100 ps) Schulten group UIUC

- The one-molecule thick layer of water (~3 Å) at the membrane
- Many biological reactions happen at membrane surfaces: structure and dynamics of membranebound water important for these processes

the challenge

Direct probing of membrane-bound water

Model system: Lipid monolayer on water

- Self-assembled monolayers of lipids: good membrane model
- Compare lipid-water interface with air-water interface: distinguish effects due to termination of bulk from lipidspecific effects

How to investigate structure of 1 ML water?

How to investigate water structure?

Water displays strong variation in H-bond strengths, which affect O—H stretch vibration

O—H stretch vibration is a marker of local water environment How to detect ONE MOLECULAR layer of water?

Sum Frequency Generation (SFG)

provides vibrational spectrum of surface monolayer

SFG spectrum of water/air interface vs bulk IR spectrum

Water at biological membranes: structure, dynamics and biomolecular sensing

<u>Outline</u>

Introduction

Structure

Sensing

Structure??

Dynamics

Structure from dynamics

Conclusions

SFG spectrum of D₂O-lipid interface

Why is the signal so much larger at the water-lipid interface?

Large signal also observed for cationic lipid monolayer

dipalmitoyl trimethyl ammonium propane

Water Alignment

Water Alignment

Adding NaCl Lowers Water Signal

NaCl

0:

 H_3C

CHg

┿

Water Alignment

Water Alignment

Water Signal Depends on Surface Potential

We can use the water signal for DNA detection: DNA is a poly-electrolyte

Water at biological membranes: structure, dynamics and biomolecular sensing

<u>Outline</u>

Introduction

Structure

Sensing

Structure??

Dynamics

Structure from dynamics

Conclusions

We can use the water signal for DNA detection

- Important for life sciences, forensic and medical diagnostics
- Most common approach: <u>labeling</u> with (fluorescent) marker → optical detection with high sensitivities, but requires extensive (bio-)chemical treatment.
- \rightarrow much interest in label-free DNA detection schemes

Label-free DNA detection schemes

publication	approach	sensitivity	detection
Fritz, 2002 PNAS 99, 14142	lithography	1 nM	electronic
Pouthas, 2004 APL 84, 1594	nano- lithography	10 µM	electronic
Hahm, 2004 Nano Lett. 4, 51	nanowires	10 fM	electronic
Star, 2006 PNAS 103, 1594	carbon nanotubes	1 nM	electronic

General principle of label-free schemes

Field-effect transistor-type geometries that rely on changes in surface fields due to adsorption of *anionic* DNA

Copyright ©2002 by the National Academy of Sciences

Fritz, PNAS **99,** 14142 (2002).

- Also employ poly-anionic character of DNA
- Detect optically not electrically using water as the reporter for the presence of DNA

Adding DNA

a polyanion

 λ -DNA: 48502 bp

Water Signal Depends on Surface Potential

$$\sqrt{I_{SFG}} \psi_{0} = 2kT \sinh^{-1} \left(\frac{\beta \sigma}{\sqrt{8\varepsilon\varepsilon_{0} [DNA]_{0}}} \right) \text{Gouy-Chapman}$$

$$\left[DNA \right]_{0} = \left[DNA \right]_{\infty} \exp\left(-e\beta\psi_{0}/kT \right) \text{Boltzmann}$$

$$K = \left(\frac{1-\beta}{\beta} \right) \left[DNA \right]_{0}^{n} \text{ Langmuir}$$

$$\beta = \text{fraction of available `adsorption' sites} 10^{\circ} 10^{\circ} 10^{\circ} 0.05}$$

$$\left[DNA \right]_{0} = \text{near-surface concentration of DNA}$$

$$\left[DNA \right]_{\infty} = \text{bulk concentration of DNA}$$

$$K = \text{association constant}$$

$$n = \text{cooperativity constant}$$

Conclusion (intermediate...)

• Sensitive, labelfree DNA detection by optical detection of water vibrations (also useful for toxins).

Water at biological membranes: structure, dynamics and biomolecular sensing

<u>Outline</u>

Introduction

Structure

Sensing

Structure??

Dynamics

Structure from dynamics

Conclusions

Comparison of air-water and lipid-water interfaces

linid

Similar spectra: same interfacial water?

SFG spectrum of water/air interface vs bulk IR spectrum

Interpretation in terms of quasi-static sub-structures¹ at surface doubtful, given recent experimental results for bulk water²

¹ Shen et al., PRL 1993; ²Woutersen, Nature, 1999; Cowan, Nature 2005.

Remember the H₂ molecule?

Hypotheses

Testing the hypothesis

using isotopic dilution experiments

'Ice/Liquid-like' hypothesis

the amplitude of the two-peaks should change over the whole spectrum

Testing the hypothesis

using isotopic dilution experiments

lsFG^{/l}ref.(a.u.)

'Ice/Liquid-like' hypothesis

O-H coupling hypothesis

SFG spectrum should change from double-peak to a single-peak structure

H-bonded doublet is due to substructures? \rightarrow Isotopic dilution

Splitting of peak by distinct substructures or intramolecular coupling (symm. & asym. stretches)??

H-bonded doublet is NOT due to substructures

H-bonded doublet is due to Fermi resonance

Water at biological membranes: structure, dynamics and biomolecular sensing

<u>Outline</u>

Introduction

Structure

Sensing

Less structure

Dynamics

Structure from dynamics

Conclusions

Double-peaked structure is due to Fermi resonance...

Water at biological membranes: structure, dynamics and biomolecular sensing

<u>Outline</u>

Introduction

A bit of structure

Sensing

Structure??

Dynamics

Structure from dynamics

Conclusions

*Backus... Bonn, Science 2005; McGuire, Science 2006; Smits... Bonn PRL 2007

Comparison air-water and lipid-water interfaces

Record changes in SFG signal at specific frequencies as a function of time after vibrational excitation

Dynamics at the water-air interface

Dynamics at water/air interface:

- Distinct spectral response
- Two time constants
- No pump-polarization dependence

just like bulk!

[#]Woutersen, Nature 1999;*Cowan, Nature 2005; [@]Lock, J. Chem. Phys 2002

Ultrafast energy transfer between surface and bulk water

[#]Woutersen, Nature 1999;*Cowan, Nature 2005; @Lock, J. Chem. Phys 2002

Comparison air-water and lipid-water interfaces

Similar spectra: same interfacial water?

Different dynamics for the two interfaces

Dynamics at water/air interface reflect *bulk* behaviour; Not so for water/lipid interface Membrane-bound water is energetically isolated from the bulk

Membrane-bound water is energetically isolated from the bulk

How? Why?

Answer lies in steady-state SFG spectra of membrane-bound water

We are looking at headgroup water

Water at biological membranes: structure, dynamics and biomolecular sensing

<u>Outline</u>

Introduction

A bit of structure

Sensing

Less structure

Dynamics

Structure from dynamics

Water at biological membranes: structure, dynamics and biomolecular sensing

<u>Outline</u>

Introduction

A bit of structure

Sensing

Less structure

Dynamics

Structure from dynamics

Conclusions

Conclusions

- Water surface structure is simpler than has been thought (PRL **100**, 173901 (2008))
- At many interfaces, surface water exchanges vibrational energy rapidly with the underlying bulk (PRL **98**, 098302 (2007))
- In contrast, membrane-bound water does not show fast energy exchange – it does not just terminate the bulk and constitutes an intrinsic part of membrane (JACS 129, 9608 (2007))

Membrane – lipids Membrane – lipids + water

• Sensitive, labelfree DNA detection by optical detection of water vibrations (JACS **129**, 8420 (2007))