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Biological membranes 

hydrophobic alkyl chains hydrophilic “polar” head group  

Phospholipids: building 
block of cell membrane 

lipids 

Outside cell 

proteins 

water 

Inside cell 



• Important biomolecular interactions at cell membrane 

• Functionality = interplay between lipids/proteins/water  

Biological membranes 

lipids 

Outside cell 

proteins 

water 

Inside cell 



Membrane-bound water 

MD simulation (~100 ps) Schulten group UIUC 

Most information on membrane-
bound water has been obtained 

through MD simulations: 

- residence time: exchange with 

  bulk on ps-ns timescales 

- preferential orientation  

- heterogeneity?? 



• The one-molecule thick layer of water (~3 Å) at the 

membrane 

• Many biological reactions happen at membrane 
surfaces: structure and dynamics of membrane-

bound water important for these processes 

the challenge   
    Direct probing of membrane-bound water  

Membrane-bound water 



How to investigate structure of 1 ML water? 

  Model system: Lipid monolayer on water  

• Self-assembled monolayers of lipids: good membrane model 

• Compare lipid-water interface with air-water interface:  

  distinguish effects due to termination of bulk from lipid- 
  specific effects 

air 

water water 

Dimyristoylphosphatidylserine (DMPS)  



 Water displays strong variation in H-bond strengths, which 

affect O—H stretch vibration 

 

 
 

 
 
 

 
 

 
O—H stretch vibration is a marker of local water environment  

How to investigate water structure? 
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Sum Frequency Generation (SFG) 

provides vibrational spectrum of surface monolayer 
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OH-stretch vibrations of H2O 
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SFG spectrum of the Air-D2O Interface 

OH-stretch vibrations of D2O 
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SFG spectrum of D2O-lipid interface 
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Why is the signal so much larger at the water-lipid interface? 
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  Large signal also observed for cationic lipid monolayer 

D2O + DPTAP 
(cationic lipid) 

Lipid CH 

D2O/air 

dipalmitoyl trimethyl ammonium propane 

Large signal related to charge? 



Water Alignment 

+ + + + + + + + + 

(2) 0c  In centro-symmetric environment  
    (bulk water) 



Water Alignment 

+ + + + + + + + + 

(2) 0c  in headgroup region due to water  
alignment  large SFG signal! 



Adding NaCl Lowers Water Signal  

+ 
NaCl 



Water Alignment 

+ + + + + + + + + 

(2) 0c  in headgroup region due to water  
orientation  large SFG signal! 



Water Alignment 

+ + + + + + + + + 

(2) 0c  Lipid field is shielded by Cl- ions: 
disorder is restored 

Cl- 

Cl- 
Cl- Cl- Cl- 



Water Signal Depends on Surface Potential 

1

0 02 sinh ( / 8 C)kT  

Gouy-Chapman: 

surface charge density 
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We can use the water signal for DNA detection:  
     DNA is a poly-electrolyte 
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We can use the water signal for DNA detection 

• Important for life sciences, forensic and 

medical diagnostics 

• Most common approach: labeling with 
(fluorescent) marker  optical detection 

with high sensitivities, but requires extensive  

(bio-)chemical treatment.  

 much interest in label-free DNA detection schemes 



Label-free DNA detection schemes 

publication approach sensitivity detection 

Fritz, 2002  

PNAS 99, 14142 

lithography 1 nM electronic 

 

Pouthas, 2004 

APL 84, 1594 

nano-

lithography 

10 µM electronic 

Hahm, 2004 
Nano Lett. 4, 51 

nanowires 10 fM electronic 

 

Star, 2006 

PNAS 103, 1594 

carbon 

nanotubes  

1 nM electronic 

 



General principle of label-free schemes 

Copyright ©2002 by the National Academy of Sciences Fritz, PNAS 99, 14142 (2002). 

Si Si depletion  
region  

Field-effect transistor-type geometries that rely on changes 

in surface fields due to adsorption of anionic DNA 
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Our scheme 

• Also employ poly-anionic character of DNA 

• Detect optically – not electrically – using 
water as the reporter for the presence of DNA 

 

 

 

 

 

 



Adding DNA 
a polyanion 

-DNA: 
48502 bp 

0    pM 
12  pM 
47  pM 

94  pM 



Water Signal Depends on Surface Potential 

1

0 02 sinh ( / 8 C)kT  

Gouy-Chapman: 

charge density 
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DNA Concentration Dependence: picomolar sensitivity! 

-DNA 

NaCl 

Boltzmann      
00
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K=association constant 

n= cooperativity constant 
Following Miranda, CPL 1998 

[DNA]0=near-surface concentration of DNA 



DNA Concentration Dependence: picomolar sensitivity! 

-DNA 

4 -1 -1=2.6×10 M lK per base 

Cooperativity n=3 Highly sensitive DNA detection, 
readily made specific 

NaCl 
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Conclusion (intermediate…) 

• Sensitive, labelfree DNA detection by optical 

detection of water vibrations (also useful for toxins). 
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Comparison of air-water and lipid-water interfaces     
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SFG spectrum of water/air interface vs bulk IR spectrum 

Interpretation in terms of 
quasi-static sub-structures1 

at surface doubtful, given 
recent experimental results 
for bulk water2 

1 Shen et al., PRL 1993; 2Woutersen, Nature, 1999; Cowan, Nature 2005. 
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strong 

weak 

free 



Remember the H2 molecule? 

O-D O-D 

asym 

symm 

(same water molecule) 



SS AS 

Hypotheses 

‘Ice/Liquid-like’ hypothesis O-H coupling hypothesis 

Strong Weak 

Which hypothesis is correct? 



Testing the hypothesis 

the amplitude of the two-peaks should 
change over the whole spectrum 

‘Ice/Liquid-like’ hypothesis 

Strong Weak 

D2O 

HDO 

using isotopic dilution experiments 



SFG spectrum should change from 
double-peak to a single-peak structure 

SS AS 

O-H coupling hypothesis 

D2O 

HDO 

SS AS 

Testing the hypothesis 

using isotopic dilution experiments 

Strong Weak 

D2O 

HDO 

‘Ice/Liquid-like’ hypothesis 



H-bonded doublet is due to substructures?  Isotopic dilution 
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H-bonded doublet is due to Fermi resonance 
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Double-peaked structure is due to Fermi resonance… 
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…and contains little info on structure. 
Broad and featureless spectra hide water dynamics. 
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Fs interfacial vibrational dynamics: From c(2) to c(4)  

IR (100 fs) 
vis (ps) 

SFG 

v = 0 

v = 1  

IR pump (100 fs) 

twait 

Surface-specific femtosecond time-resolved spectroscopy* 

The SFG signal decreases 

due to depletion of ground 

state. Recovery reflects 

vibrational relaxation. 

twait 
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G
 

pump 

*Backus… Bonn, Science 2005 ; McGuire, Science 2006; Smits… Bonn PRL 2007 



Comparison air-water and lipid-water interfaces     
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Dynamics at the water-air interface 

Dynamics at water/air interface:  
• Distinct spectral response 
• Two time constants 
• No pump-polarization dependence  

 
just like bulk! 
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Ultrafast energy transfer between surface and bulk water 

#Woutersen, Nature 1999;*Cowan, Nature 2005; @Lock, J. Chem. Phys 2002 
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IR pump 
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Förster# 



Ultrafast energy transfer between surface and bulk water 

air 

  

    

water 

Δt = 0 

IR pump 

Δt = T1 Δt = teq 
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Förster# 

Due to ultrafast energy 
transfer, excitation samples 

many differently H-bonded 
molecules: 1 relaxation time! 



Comparison air-water and lipid-water interfaces     
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Similar spectra: same interfacial water? 



Different dynamics for the two interfaces 

Dynamics at water/air interface reflect bulk behaviour; 
Not so for water/lipid interface 
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Membrane-bound water is energetically isolated from the bulk 

Vibrational frequency (cm-1) 

1.4 

1.3 

1.2 

1.1 

1.0 

0.9   
  
  
 D

S
F

G
 s

ig
n

a
l 

1500 1000 500 0 

pump-probe delay (fs) 

3500 cm-1 

3400 cm-1 

3300 cm-1 

3200 cm-1 

 (cm-1) T1 (fs) 

3500 

3400 

3300 

3200 

570 

430 

130 

<100 

T
1
 (

fs
) 

800 

600 

400 

200 

0 

  3500   3300   3100 

data 

model* 

*Staib, A.; Hynes, J. T. Chem.Phys.Lett. 1997 

• No evidence for spectral diffusion 

• single exponential recovery 

• large polarization dependence 



Membrane-bound water is energetically isolated from the bulk 

  How? Why? 

tFörster< 50 fs tFörster> 1ps 

Answer lies in steady-state SFG spectra  
of membrane-bound water 



Water bound to an anionic lipid monolayer 
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We are looking at headgroup water 
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This is the water we are 
observing with SFG. 
Spatially isolated from bulk   

slow Forster energy transfer 

oriented the right way,  

but at other side of charge 
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Conclusions 

• Water surface structure is simpler than has been thought 
(PRL 100, 173901 (2008)) 

• At many interfaces, surface water exchanges vibrational 

energy rapidly with the underlying bulk (PRL 98, 098302 (2007)) 

• In contrast, membrane-bound water does not show fast 

energy exchange – it does not just terminate the bulk and 

constitutes an intrinsic part of membrane (JACS 129, 9608 (2007)) 

 

 

• Sensitive, labelfree DNA detection by optical 

detection of water vibrations (JACS 129, 8420 (2007)) 

 

Membrane = lipids  

Membrane = lipids + water 


