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Biological membranes
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Phospholipids: building
/ \block of cell membrane

hydrophobic alkyl chains hydrophilic “polar” head group




Biological membranes
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Inside cell

e Important biomolecular interactions at cell membrane

e Functionality = interplay between lipids/proteins/water



Membrane-bound water

Most information on membrane-
bound water has been obtained
through MD simulations:

- residence time: exchange with
bulk on ps-ns timescales

- preferential orientation

- heterogeneity??

MD simulation (~100 ps) Schulten group UIUC



Membrane-bound water

e The one-molecule thick layer of water (~3 A) at the
membrane

e Many biological reactions happen at membrane
surfaces: structure and dynamics of membrane-
bound water important for these processes

the challenge
Direct probing of membrane-bound water




Model system: Lipid monolayer on water

e Self-assembled monolayers of lipids: good membrane model

e Compare lipid-water interface with air-water interface:
distinguish effects due to termination of bulk from lipid-
specific effects

Dimyristoylphosphatidylserine (DMPS)
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How to investigate structure of 1 ML water?



How to investigate water structure?

Water displays strong variation in H-bond strengths, which
affect O—H stretch vibration
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Sum Frequency Generation (SFG)

provides vibrational spectrum of surface monolayer
IR

VIS
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SFG spectrum of water/air interface vs bulk IR spectrum
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SFG spectrum of the Air-D,0O Interface
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SFG spectrum of D,O-lipid interface
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OD vibrations
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Why is the signal so much larger at the water-lipid interface?



Large signal also observed for cationic lipid monolayer

20
D,O + DPTAP
(cationic lipid)
15
- Large signal related to charge?
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Water Alighment

+ + + + + + + +

)((2) — O In centro-symmetric environment
(bulk water)



Water Alighment

+ + + + + + + + +

A, AN A AN A

Z(Z) + () in headgroup region due to water
alignment - large SFG signal!



Adding NaCl Lowers Water Signal

- [NaCl]
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Water Alighment

+ + + + + + + + +

A, AN A AN A

)( (2) - O in headgroup region due to water
orientation - large SFG signal!



Water Alignment

)((2) O Lipid field is shielded by Cl- ions:
disorder is restored



Water Signal Depends on Surface Potential
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We can use the water signal for DNA detection:
DNA is a poly-electrolyte
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We can use the water signal for DNA detection

e Important for life sciences, forensic and
medical diagnostics

e Most common approach: /abeling with
(fluorescent) marker - optical detection
with high sensitivities, but requires extensive
(bio-)chemical treatment.

- much interest in label-free DNA detection schemes



Label-free DNA detection schemes

publication approach sensitivity

Fritz, 2002 lithography |1 nM
PNAS 99, 14142

Pouthas, 2004 |nano- 10 uM
APL 84, 1594 lithography

Hahm, 2004 |nanowires |10 fM
Nano Lett. 4, 51

Star, 2006 carbon 1 nM
PNAS 103, 1594 |nanotubes




General principle of label-free schemes
Field-effect transistor-type geometries that rely on changes

in surface fields due to adsorption of a@rnionic DNA

Copyright ©2002 by the National Academy of Sciences Frltz[ PNAS 99[ 14142 (2002)-




Our scheme

e Also employ poly-anionic character of DNA

e Detect optically — not electrically — using
water as the reporter for the presence of DNA



Adding DNA

a polyanion

[A-DNA]
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Water Signal Depends on Surface Potential
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DNA Concentration Dependence: picomolar sensitivity!

o [ v, = 2kT sinh ™ ( Bo/ \[8z2,[DNA], ) Gouy-Chapman
[DNA], =[DNA],, exp(—epBy,/kT)  Boltzmann

K = (%J[DNA]B Langmuir

3= fraction of available ‘adsorption’ sites
'DNA]y=near-surface concentration’'of DNA

'DNA],,=bulk concentration of DNA
K=association constant
N= cooperativity constant

Following Miranda, CPL 1998



DNA Concentration Dependence: picomolar sensitivity!
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Cooperativity N=3 = Highly sensitive DNA detection,

readily made specific



Conclusion (intermediate...)

e Sensitive, labelfree DNA detection by optical
detection of water vibrations (also useful for toxins).
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What determines the shape
chvior Of the SFG spectra; what
does it tell us about the
membrane-bound water?

OD vibrations
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Comparison of air-water and lipid-water interfaces

VATATAY
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Similar spectra: same interfacial water?




SFG spectrum of water/air interface vs bulk IR spectrum
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1Shen et al., PRL 1993; 2Woutersen, Nature, 1999; Cowan, Nature 2005.



Remember the H, molecule?
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(same water molecule)



Hypotheses

‘Ice/Liquid-like” hypothesis O-H coupling hypothesis
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2200 2400 2600 2800 2200 2400 2600 2800
-1 -1
IR frequency (cm ') IR frequency (cm ')




Testing the hypothesis

IsFG/lref.(a.u.)

using isotopic dilution experiments
‘Ice/Liquid-like” hypothesis
Strong Weak

IR frequency (cm'1)

the amplitude of the two-peaks should
change over the whole spectrum



Testing the

nypothesis

IsSFG/lref.(a.u.)

using isotopic di
‘Ice/Liquid-like” hypothesis

Strong Weak

IR frequency (cm'1)

ution experiments
O-H coupling hypothesis

SS AS
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0 0

SS AS

SFG spectrum should change from
double-peak to a single-peak structure



H-bonded doublet is due to substructures? - Isotopic dilution
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H-bonded doublet is NOT due to substructures

O-D

N

SFG intensity (arb. units)
[EN
é

water/
lipid +10

pure D50
' H,0:D,0 2:1

water/air
pure D,0O
A H,0:D,0 2:1

x NS

I I I I I
2000 2200 2400 2600 2800 3000

o

IR frequency (cm )



H-bonded doublet is due to Fermi resonance

bend overtone (6o4=2)
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Double-peaked structure is due to Fermi resonance...
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Fs interfacial vibrational dynamics: From (2 to (%

Surface-specific femtosecond time-resolved spectroscopy*

IR pump (100 fs)
_ IR (100 fs)
VIS (ps)
SFG
\ ©
i -
Wlfﬁ; i ,-Mf‘mm & ‘ ”
V =
The SFG ses
duey,ta i g olnd
state. Recovery reflects

vibrational relaxation.

*Backus... Bonn, Science 2005 ; McGuire, Science 2006; Smits... Bonn PRL 2007



Comparison air-water and lipid-water interfaces
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Dynamics at the water-air interface

Dynamics at water/air interface:
e Distinct spectral response

e Two time constants

e No pump-polarization dependence

Just like bulk!
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Ultrafast energy transfer between surface and bulk water

IR pump Forster*
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#Woutersen, Nature 1999;*Cowan, Nature 2005; @Lock, J. Chem. Phys 2002



Ultrafast energy transfer between surface and bulk water
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Comparison air-water and lipid-water interfaces

TRVRIAY]
lipid

H-bonded OH H-bonded OH
2 >
= E
RTINS T AT R O O I v TR NN RN R |
3000 3200 3400 3600 3000 3200 3400 3600
IR frequency (cm-?) IR frequency (cm)
Similar spectra: same interfacial water?
——— ~ —




Different dynamics for the two interfaces

ASFG signal
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Dynamics at water/air interface reflect bulk behaviour;
Not so for water/lipid interface



Membrane-bound water is energetically isolated from the bul
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Membrane-bound water is energetically isolated from the bulk
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How? Why?

Answer lies in steady-state SFG spectra
of membrane-bound water




Water bound to an anionic lipid monolayer
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We are looking at headgroup water

oriented the right way,
but at other side of charge
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This is the water we are
observing with SFG.

Spatially isolated from bulk >
slow Forster energy transfer
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Conclusions

e Water surface structure is simpler than has been thought
(PRL 100, 173901 (2008))

e At many interfaces, surface water exchanges vibrational
energy rapidly with the underlying bulk (PRL 98, 098302 (2007))

e In contrast, membrane-bound water does not show fast
energy exchange — it does not just terminate the bulk and
constitutes an intrinsic part of membrane (JACS 129, 9608 (2007))

—Membrane—iplds
Membrane = lipids + water

e Sensitive, labelfree DNA detection by optical
detection of water vibrations (JACs 129, 8420 (2007))



