Lund

~100.000 inhabitants, ~40.000 students

The Dome

The main University Building

Control at the quantum level

Stefan Kröll Lund University

Vetenskapsrådet

Knut och Alice

Wallenbergs

Stiftelse

Quantum Repeaters for Long Distance Fibre-Based Quantum Communication

Outline

- Some reflections regarding the beginning of the field of quantum computing and why might quantum computers be interesting
 - How to construct quantum computers
 - The Lund approach to quantum computing
 - Quantum memories for quantum cryptography
 - The most efficient quantum memories today, how do they work and how are they made

Outline

- Some reflections regarding the beginning of the field of quantum computing & why quantum computers might be interesting
 - How to construct quantum computers
 - The Lund approach to quantum computing
 - Quantum memories for quantum cryptography
 - The most efficient quantum memories today, how do they work and how are they made

Computing, history

• There is a universal Turing machine that can simulate any other Turing machine

– Alan Turing 1936

• If an algorithm can be performed at any class of hardware, then there is an equivalent efficient algorithm for a Turing machine

– Church-Turing thesis (strong version)

(Quantum) computing, history

- Rolf Landauer, IBM, 1960ies
 - From an entropy point of view a computation consumes an energy >kT*ln(2) (~3*10⁻²¹ J) per bit information erased or discarded
 - A reversible computer, which after the computations just prints the answer and then reverse its operations going back to the original state, could give a much lesser entropy change and thus could be much more energy efficient

Information is physical Rolf Landauer

• Charles Bennett, IBM, 1973

 It is in principle possible to construct a reversible Turing machine with essentially the same performance as a Turing machine

Regarding operations on quantum systems

- Generally a quantum system, Ψ, at time t₂ can be related to its state at some earlier time, t₁, by a unitary transformation U
- $\Psi(t_2) = U\Psi(t_1)$
- Clearly, if we expose the system at time t₂ to U⁻¹, the original state is obtained
- $U^{-1} \Psi(t_2) = U^{-1} U \Psi(t_1) = \Psi(t_1)$

Quantum computing, history

- Paul Benioff, Argonne National Lab., 1982
 - For any arbitrary Turing machine carrying out a calculation, Q, in N steps, there is a set of states, Ψ , and a hamiltonian, H, such that the time development of Ψ under H reproduces the calculation of Q by the Turing machine.
 - Benioff also shows that a quantum mechanical implementation of a Turing machine is as least as efficient as a classical Turing machine and it would in principle not need to consume any energy for its calculations

A qubits

For large N such a quantum system is too complex to be simulated by a (classical) computer

Quantum computing, history

- David Deutsch, Oxford, 1985
 - Deutsch argues (and shows) that, as for classical computers, it should be possible to program a quantum computer to carry out arbitrary operations
 - Such quantum computers would have properties different from classical computers, e.
 g., quantum computers would be faster on certain calculations due to 'quantum parallelism'

In quantum computers data is represented by quantum bits (qubits)

 A qubit is a quantum mechanical systems with two states |0> and |1> that can be in any arbitrary superposition

 $\Psi = \alpha |0\rangle + \beta |1\rangle$

of those states

Superposition of states makes a quantum computer (QC) powerful

Input data (4 bits) $(|0>+|1>)/\sqrt{2}$ ()

 $(|0>+|1>)/\sqrt{21}$

$$(|0>+|1>)/\sqrt{2}$$

 $(|0>+|1>)/\sqrt{2}$

Quantum Computer

Input = (0010 + |1>) (|0>+|1>) (|0>+|1>) (|0>+|1>)/4 == (|0000>+|0001>+|0010>+|0011>...+|1111>)/4

Quantum parallelism

- Consider an operation, *f*, performing the operation f(x) on a state *x* and putting the result in *y*. For a system $|x, y\rangle$ we obtain for $x = (/0 > +/1 >)/\sqrt{2}$
 - $|x,y\rangle = [/0,f(0)\rangle + /1,f(1)\rangle]/\sqrt{2}$
 - By performing the operation *f* on state *x*, *f*(0) and *f*(1) have been calculated in one operation.

Quantum parallelism

- Such a 'quantum parallelism' is not automatically useful because a measurement on system /x, y>will collaps the superposition $[/0,f(0)>+/1,f(1)>]/\sqrt{2}$ to either the first or the second term
 - However, in a measurement where *f*(0) and *f*(1) interferes, global properties of *f*, requiring that both values have been calculated can be obtained

Quantum parallelism

More generally, if x is represented by n quantum bits it can be a superposition of 2ⁿ values. The function f is then evaluated in 2ⁿ points in one step.

Quantum computing, history

- Peter Shor, ATT Bell laboratories, 1994
 - Quantum algorithms for prime number factorisation much more efficient than the best known algorithms for classical computers
 - Encryption, security protocols on the internet and elsewhere

Papers published in quantum information science LIND

Quantum computing impacts the landscape of computer science UNIVERSITY

- QC algorithms do not violate the Church-**Turing thesis:**
 - any algorithmic process can be simulated using a Turing machine
- QC algorithms challenge the strong version of the Church-Turing thesis
 - If an algorithm can be performed at any class of hardware, then there is an equivalent efficient algorithm for a Turing machine

Outline

- Some reflections regarding the beginning of the field of quantum computing and why might quantum computers be interesting
 - How to construct quantum computers
 - The Lund approach to quantum computing
 - Quantum memories for quantum cryptography
 - The best quantum memories today, how do they work and how are they made

Why is QC interesting?

- A quantum computer would be able to solve some problems which are untractable on conventional computers, such as, certain computationally hard problems
- QC is a structured way to learn how to control quantum systems and how to design fully controllable quantum systems

Why is QC interesting?

- A quantum computer can solve some problems which are untractable with conventional computers, such as, certain computationally hard problems
- QC is a structured way to learn how to control quantum systems and how to design fully controllable quantum systems

Computationally hard problems

- The number of steps required to solve the problem using the best known algorithms on classical computers increase exponentially with the size of the problem
- For some of these problems there are, however, quantum algorithms where the number of steps only increase polynomially

Computationally hard problems

- Consider a computationally hard problem with an input represented by n=25 bits that takes 1 hour to solve on a classical computer (computation time goes as 2ⁿ)
- It will take 1000 years to solve an n=50 qubit input problem
- While it on a quantum computer (computation time goes as n²) the time would go from 1 hour to 4 hours.

Fourier transforms

- Fast Fourier transform on a function represented by N=2ⁿ numbers
 - Classically this requires Nlog₂(N)=n2ⁿ steps
 - On QC $[\log_2(N)]^2 = n^2$ steps
 - This looks fantastic!
 - However, we do not have full information, readout will collapse the state

Multiple qubits

- N qubits span a computational basis $X_1, X_2, X_3 \dots, X_N >$
 - The quantum state is specified by 2^N amplitudes
 - Lets say N \approx 500 would it be difficult to store these amplitudes?
 - The number of amplitudes is larger than the estimated number of atoms in the universe

Power of quantum computers

• The quantum corollary to Moore's law could essentially be something like "a single qubit will be added to quantum computers every 18 months"

Outline

- Some reflections regarding the beginning of the field of quantum computing and why might quantum computers be interesting
 - How to construct quantum computers
 - The Lund approach to quantum computing
 - Quantum memories for quantum cryptography
 - The most efficient quantum memories today, how do they work and how are they made

- Coherent two-state systems acting as qubits
- Possibility to manipulate the qubits individually (single qubit operations)
- Coupling between any two qubits (two-bit gates)
- Possibility for reliable read-out of the individual qubits
- Scalability

Why is it difficult to construct a quantum computer

- The quantum bits must remain in superposition states all through the calculations – Thus the quantum bits must not interact with the environment
 - Quantum logics requires that bits can control each other – Thus the quantum bits must interact with each other

Quantum error correction

- There are efficient error correction algorithms for correcting errors in quantum computer operation when the error per operation is $< 10^{-4}$ ($< 10^{-2}$)
 - If quantum operations can be performed with a fractional error of less than 10⁻⁴ we can keep an arbitrary large quantum system coherent for an arbitrary long time!

Outline

- Some reflections regarding the beginning of the field of quantum computing and why might quantum computers be interesting
 - How to construct quantum computers
 - The Lund approach to quantum computing
 - Quantum memories for quantum cryptography
 - The most efficient quantum memories today, how do they work and how are they made

- Coherent two-level systems acting as qubits
- Possibility to manipulate the qubits individually (single qubit operations)
- Coupling between any two qubits (two-bit gates)
- Possibility for reliable read-out of the individual qubits
- Scalability

The rare-earth-ions hyperfine states are used as qubit states

- Long coherence times of the optical transitions (up to several ms)
- •At 4 Kelvin the ground state hyperfine levels have ms-s coherence times and very long lifetimes (~ hours)
- π -pulse takes < 1 μ s

Ground state with hyperfine splitting

Requirements for quantum computing

- Coherent two-level systems acting as qubits
- Possibility to manipulate the qubits individually (one-bit gates)
- Coupling between any two qubits (two-bit gates)
- Possibility for reliable read-out of the individual qubits
- Scalability

Crystal structure Conceptual picture of crystal

 Pr^{3+} : Y₂SiO₅

 Pr^{3+} : Y₂SiO₅

•Narrow homogeneous line-widths (1-10 kHz)

•Large inhomogeneous line-widths (1-200 GHz)

- Coherent two-level systems acting as qubits
- Possibility to manipulate the qubits individually (one-bit gates)
- Coupling between any two qubits (two-bit gates)
- Possibility for reliable read-out of the individual qubits
- Scalability

LUND

Dipole-dipole interaction

- UNIVERSITY 1. Two ions absorbing at different frequencies are located close to each other in the crystal lattice. In a non-centrosymmetric site the ions will have a permanent electric dipole moment
 - 2. The ions have a different dipole moment in their excited state.One of the ions is excited on its optical transition
 - 3. This change in dipole moment is sensed by the other ion causing its absorption frequency to change.

Dipole-dipole interaction strength in rare-earth crystals

Approximate numbers

- Ion distance
- 100 nm
- 10 nm
- 1 nm

frequency shift
1 line width
1000 line widths
1000000 line widths

UND

Requirements for quantum computing

- Coherent two-level systems acting as qubits
 - Possibility to manipulate the qubits individually (one-bit gates)
 - Coupling between any two qubits (two-bit gates)
 - Possibility for reliable read-out of the individual qubits
 - Scalability

All ions interact strongly, but single ions are difficult to detect

Single ion readout

Single ion readout concept

LUND UNIVERSITY • The qubit state can be determined from the rate of Ce fluorescence photons

 $|e\rangle$

 $|1\rangle$

Qubit

Readout (Ce³⁺⁾

 ${}^{2}D_{3/2}$

Seelected results

- Multiple instance qubits
 - Qubits initiated in well defined states
 - 97.5% state-to-state transfer efficiency
 - Qubit distillation >90%
 - Arbitrary single qubit operations F>0.9
- Single instance scheme
 - Better fidelities
 - Scalable to severable qubits

Outline

- Some reflections regarding the beginning of the field of quantum computing and why might quantum computers be interesting
 - How to construct quantum computers
 - The Lund approach to quantum computing
 - Quantum memories for quantum cryptography
 - The most efficient quantum memories today, how do they work and how are they made

Why develop quantum memories?

LUND UNIVERSITY

- Effective use of quantum resources, such as superposition of states and entanglement, in quantum information requires new devices
 - Storage of intermediate results in quantum computations, communication between quantum computers
 - Quantum memories required in quantum repeaters for long distance quantum cryptography

Quantum memory for time-bin qubits for quantum key distribution LUND UNIVERSITY time-bin qubits Sender Receiver

Requirements

Need to store amplitude and phase of a wave-packet (on average less than one photon) in a superposition between two different times

Quantum memories

- We would like to store and recall the state, Ψ , of a quantum system
- Generally a quantum system at time t₂ can be related to its state at some earlier time, t₁, by a unitary transformation U
- $\Psi(t_2)=U\Psi(t_1)$
- Clearly, if we expose the system at time t₂ to U⁻¹, the original state is obtained
- $U^{-1} \Psi(t_2) = U^{-1} U \Psi(t_1) = \Psi(t_1)$

Quantum memories

- We presently focus on developing quantum memories for quantum cryptography, where the information is stored in wave-packets consisting of, on average, less than one photon
 - Our approach is to absorb the wave-packet and, when the information is to be read out, timereverse the absorption process such that the original light state is reconstructed

Moiseev & Kröll, PRL 87, 173601 (2001)

Doppler-broadening

- The unshifted resonance frequency is ω_0
- **u** is a unit propagation vector for the exciting radiation
- For an atom moving with velocity \mathbf{v} the transition frequency, ω , is

$$\omega = \omega_0 (1 + \frac{\mathbf{v} \cdot \mathbf{u}}{c})$$

• For two counterpropagating photons the absorption frequency of the atom is reversed relative to the unshifted resonance frequency ω_0

Picture of crystal

Thoto: Tomas Svensson

Exit beam

Entrance beam

Anti-reflection coated Triangular surface

Reflections in the high reflectance surface

Controlled reversible inhomogeneous broadening (CRIB)

• Prepare an ensemble of absorbers that all have the same initial resonance frequency

• Apply a (position dependent) external field that shifts the atomic resonance frequencies by different amounts

• This inhomogeneous broadening can be reversed by changing the external field

Nilsson & Kröll, Opt. Commun. **247**, 393-403 (2005) Kraus, Tittel, Gisin, Nilsson, Kröll & Cirac, Phys. Rev. A**73**, 020302 (2006)

Photo: Tomas Svensson

Spectral design

Quantum memories (QM) Experimental data Lund

- Memory efficiency (35%)
 - Amari et al., J Lumin **130**,1579 (2010)
- Single photon memory efficiency (25%)
 Sabooni et al., PRL 105, 060501 (2010)
- Spin state storage, > 100 μs
 - Afzelius et al., PRL **104**, 040503 (2010)

Recent experimental quantum memory results

- 69% storage efficiency, Hedges, Longdell, Li & Sellars, Nature, 465, 1052 (2010)
- Mapping of 64 photonic qubits into and out of one solid-state atomic ensemble, Usmani, Afzelius, de Riedmatten & Gisin, arXiv:1002.3782 (2010)
- 87% storage efficiency, Hosseini et al., arXiv:1009.0567

Outline

- Some reflections regarding the beginning of the field of quantum computing and why might quantum computers be interesting
 - How to construct quantum computers
 - The Lund approach to quantum computing
 - Quantum memories for quantum cryptography
 - The most efficient quantum memories today, how do they work and how are they made

Yan Ying

Jenny Karlsson

Brian Julsgaard

Andreas Walther

Atia Amari

Mahmood Sabooni

Mattias Nilsson

